Advertisement

Genesis of the Binh Do Pb-Zn Deposit in Northern Vietnam: Evidence from H-O-S-Pb Isotope Geochemistry

  • Chaowen Huang
  • Huan LiEmail author
  • Chun-Kit Lai
Article
  • 5 Downloads

Abstract

The Binh Do Pb-Zn deposit in the Phu Luong region (Thai Nguyen Province, northern Vietnam) is located on the southern margin of the South China Block. The fault-controlled Pb-Zn orebodies are mainly hosted in Upper Paleozoic carbonate formations. In order to reveal the mineralization type and metallogenesis of this deposit, multi-isotopic (S, Pb, H and O) analyses on typical ore and gangue minerals were conducted. The average ore sulfide δ34SΣS value is 4.3‰, suggestive of magmatic sulfur. The ore sulfide Pb isotope compositions are homogeneous, with the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 18 501 to 18 673 15.707 to 15 798, and 38 911 to 39.428, respectively. Lead isotope model ages of the ore sulfides (240-220 Ma) are consistent with the timing of regional Triassic S-type granite emplacement (250-220 Ma), suggesting that the metals may have been granite-derived. The quartz δDV-SMOW (-82.4‰ to -70.5‰) and δ18OH2O (-0.4‰ to +6.4‰) values suggest that the ore-forming fluids were composed of mixed magmatic and meteoric waters. Combined with the geological features of the Pb-Zn deposit in the region, we propose that the Pb-Zn deposits belong to magmatic-hydrothermal type, rather than MVT-type as previously suggested. The Triassic granites may have contributed the ore-forming material and heat that drove the hydro-thermal system. The ore-forming fluids may have migrated into interlayer faults and fractures of the carbonate strata, diluted by subsurface meteoric water and deposited successively the vein-type and stratiform-type Pb-Zn ores.

Key Words

Binh Do deposit northern Vietnam Pb-Zn belt Triassic granitoids isotope geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Mr. Tianguo Wang for his help in sample collection. This work was partially financed by the National Natural Science Foundation of China (No. 41502067). The editor and anonymous reviewers are thanked for the insightful comments and suggestions. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0872-2.

References

  1. Anh, T. T., Gas’Kov, I. V., Hoa, T. T., et al., 2012. Complex Deposits in the Lo Gam Structure, Northeastern Vietnam: Mineralogy, Geochemistry, and Formation Conditions. Russian Geology and Geophysics, 53(7): 623–635. https://doi.org/10.1016/j.rgg.2012.05.001Google Scholar
  2. Basuki, N. I., 2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 11(1/2/3/4): 1–17. https://doi.org/10.2113/11.1-4.1Google Scholar
  3. Basuki, N. I., Taylor, B. E., Spooner, E. T. C., 2008. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Economic Geology, 103(4): 783–799. https://doi.org/10.2113/gsecongeo.103.4.783Google Scholar
  4. Cai, J. X., Zhang, K. J., 2009. A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic. Tec-tonophysics, 467(1/2/3/4): 35–43. https://doi.org/10.1016/j.tecto.2008.12.003Google Scholar
  5. Can, P. N., Ishiyama, D., Anh, T. T., et al., 2011. Mineralogical and Geo-chemical Characteristics of Rare Metals-Bearing Na Bop, Lung Hoai, Na Son and Sin Quyen Base Metal Deposits, Northern Vietnam. NMCC Annual Report, 18: 49–55Google Scholar
  6. Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211–214. https://doi.org/10.1130/0091-7613(2001)029<0211:umaisa>2.0.co;2Google Scholar
  7. Chai, M. C., Wei, F. U., Feng, Z. H., et al., 2015. Characteristics of Ore-Forming Fluids of Nongtun Pb-Zn Deposit in Xidaming Mountain of Guangxi and Their Implications for Ore Genesis. Mineral Deposits, 34(5): 948–964 (in Chinese with English Abstract)Google Scholar
  8. Chen, Z. C., Lin, W., Faure, M., et al., 2014. Geochronology and Isotope Analysis of the Late Paleozoic to Mesozoic Granitoids from Northeastern Vietnam and Implications for the Evolution of the South China Block. Journal of Asian Earth Sciences, 86: 131–150. https://doi.org/10.1016/j.jseaes.2013.07.039Google Scholar
  9. Chen, Z. C., Lin, W., Faure, M., et al., 2013. Geochronological Constraint of Early Mesozoic Tectonic Event at Northeast Vietnam. Acta Petrologica Sinica, 29(5): 1825–1840 (in Chinese with English Abstract)Google Scholar
  10. Cheng, Y. B., Mao, J. W., Liu, P., 2016. Geodynamic Setting of Late Cretaceous Sn-W Mineralization in Southeastern Yunnan and Northeastern Vietnam. Solid Earth Sciences, 1(3): 79–88. https://doi.org/10.1016/j.sesci.2016.12.001Google Scholar
  11. Corsini, F., Cortecci, G., Leone, G., et al., 1980. Sulfur Isotope Study of the Skarn-(Cu-Pb-Zn) Sulfide Deposit of Valle Del Temperino, Campiglia Marittima, Tuscany, Italy. Economic Geology, 75(1): 83–96. https://doi.org/10.2113/gsecongeo.75.1.83Google Scholar
  12. Findlay, R. H., 1997. The Song Ma Anticlinorium, Northern Vietnam: The Structure of an Allochthonous Terrane Containing an Early Palaeozoic Island Arc Sequence. Journal of Asian Earth Sciences, 15(6): 453–464. https://doi.org/10.1016/s0743-9547(97)00031-7Google Scholar
  13. Gilley, L. D., Harrison, T. M., Leloup, P. H., et al., 2003. Direct Dating of Left-Lateral Deformation along the Red River Shear Zone, China and Vietnam. Journal of Geophysical Research: Solid Earth, 108(B2): 2127. https://doi.org/10.1029/2001jb001726Google Scholar
  14. Gonez, P., Nguyên Huu, H., Ta Hoa, P., et al., 2012. The Oldest Flora of the South China Block, and the Stratigraphic Bearings of the Plant Remains from the Ngoc Vung Series, Northern Vietnam. Journal of Asian Earth Sciences, 43(1): 51–63. https://doi.org/10.1016/j.jseaes.2011.08.007Google Scholar
  15. Halpin, J. A., Tran, H. T., Lai, C.-K., et al., 2016. U-Pb Zircon Geochro-nology and Geochemistry from NE Vietnam: A ‘Tectonically Disputed’ Territory between the Indochina and South China Blocks. Gondwana Research, 34: 254–273. https://doi.org/10.1016/j.gr.2015.04.005Google Scholar
  16. Hanski, E., Walker, R. J., Huhma, H., et al., 2004. Origin of the Permian- Triassic Komatiites, Northwestern Vietnam. Contributions to Mineralogy and Petrology, 147(4): 453–469. https://doi.org/10.1007/s00410-004-0567-1Google Scholar
  17. Huang, C. W., Du, G. F., Jiang, H. J., et al., 2019. Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia. Journal of Earth Science, 30(1): 131–141. https://doi.org/10.1007/s12583-019-0859-zGoogle Scholar
  18. Ishihara, S., Anh Tran, T., Watanabe, Y., et al., 2010. Chemical Characteristics of Lead-Zinc Ores from North Vietnam, with a Special Attention to the in Contents. Bulletin of the Geological Survey of Japan, 61(9/10): 307–323. https://doi.org/10.9795/bullgsj.61.307Google Scholar
  19. Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syeno-granite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 29(3): 537–555. https://doi.org/10.1007/s12583-017-0974-7Google Scholar
  20. Lai, C.-K., Meffre, S., Crawford, A. J., et al., 2014a. The Central Ailaoshan Ophiolite and Modern Analogs. Gondwana Research, 26(1): 75–88. https://doi.org/10.1016/j.gr.2013.03.004Google Scholar
  21. Lai, C.-K., Meffre, S., Crawford, A. J., et al., 2014b. The Western Ailaoshan Volcanic Belts and Their SE Asia Connection: A New Tectonic Model for the Eastern Indochina Block. Gondwana Research, 26(1): 52–74. https://doi.org/10.1016/j.gr.2013.03.003Google Scholar
  22. Leach, D. L., Bradley, D. C., Huston, D., et al., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 105(3): 593–625. https://doi.org/10.2113/gsecongeo.105.3.593Google Scholar
  23. Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100: 561–607. https://doi.org/10.5382/av100.18Google Scholar
  24. Lepvrier, C., Faure, M., Van, V. N., et al., 2011. North-Directed Triassic Nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41(1): 56–68. https://doi.org/10.1016/j.jseaes.2011.01.002Google Scholar
  25. Li, H., Xi, X. S., Wu, C. M., et al., 2013. Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica: English Edition, 87(2): 486–500. https://doi.org/10.1111/1755-6724.12063Google Scholar
  26. Li, H., Watanabe, K., Yonezu, K., 2014a. Zircon Morphology, Geochro-nology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 60: 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009Google Scholar
  27. Li, H., Watanabe, K., Yonezu, K., 2014b. Geochemistry of A-Type Granites in the Huangshaping Polymetallic Deposit (South Hunan, China): Implications for Granite Evolution and Associated Mineralization. Journal of Asian Earth Sciences, 88: 149–167. https://doi.org/10.1016/j.jseaes.2014.03.004Google Scholar
  28. Li, H., Xi, X. S., 2015. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, 65: 375–389. https://doi.org/10.1016/j.oregeorev.2014.10.001Google Scholar
  29. Li, H., Xi, X. S., Sun, H. S., et al., 2016. Geochemistry of the Batang Group in the Zhaokalong Area, Yushu, Qinghai: Implications for the Late Triassic Tectonism in the Northern Sanjiang Region, China. Acta Ge-ologica Sinica: English Edition, 90(2): 704–721. https://doi.org/10.1111/1755-6724.12699Google Scholar
  30. Li, H., Yonezu, K., Watanabe, K., et al., 2017. Fluid Origin and Migration of the Huangshaping W-Mo Polymetallic Deposit, South China: Geochemistry and 40Ar/39Ar Geochronology of Hydrothermal K-Feldspars. Ore Geology Reviews, 86: 117–129. https://doi.org/10.1016/j.oregeorev.2017.02.005Google Scholar
  31. Li, H., Myint, A. Z., Yonezu, K., et al., 2018a. Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar: Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 95: 575–592. https://doi.org/10.1016/j.oregeorev.2018.03.015Google Scholar
  32. Li, H., Wu, Q. H., Evans, N. J., et al., 2018b. Geochemistry and Geochro-nology of the Banxi Sb Deposit: Implications for Fluid Origin and the Evolution of Sb Mineralization in Central-Western Hunan, South China. Gondwana Research, 55: 112–134. https://doi.org/10.1016/j.gr.2017.11.010Google Scholar
  33. Li, H., Wu, J. H., Evans, N. J., et al., 2018c. Zircon Geochronology and Geochemistry of the Xianghualing A-Type Granitic Rocks: Insights into Multi-Stage Sn-Polymetallic Mineralization in South China. Lithos, 312/313: 1–20. https://doi.org/10.1016/j.lithos.2018.05.001Google Scholar
  34. Li, H., Palinkaš, L. A., Watanabe, K., et al., 2018d. Petrogenesis of Jurassic A-Type Granites Associated with Cu-Mo and W-Sn Deposits in the Central Nanling Region, South China: Relation to Mantle Upwelling and Intra-Continental Extension. Ore Geology Reviews, 92: 449–462. https://doi.org/10.1016/j.oregeorev.2017.11.029Google Scholar
  35. Li, K., Zhao, S., Tang, Z., et al., 2018. Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science, 43(7), 2449–2464 (in Chinese with English Abstract)Google Scholar
  36. Liu, W. H., Zhang, X. J., Zhang, J., et al., 2018. Sphalerite Rb-Sr Dating and In Situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 29(3): 573–586. https://doi.org/10.1007/s12583-018-0785-5Google Scholar
  37. Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Cas-siterite and Zircon from the Dulong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967–976 (in Chinese with English Abstract)Google Scholar
  38. Lu, Y. X., Liu, H. G., Huang, J. N., et al., 2009. Preliminary Division of the Metallogenetic Belts in the Central South Peninsula of Southeast Asia and Their Regional Ore-Forming Characteristics. Geological Bulletin of China, 28(2/3): 314–325 (in Chinese with English Abstract)Google Scholar
  39. Ma, G. L., Beaudoin, G., Qi, S. J., et al., 2004. Geology and Geochemistry of the Changba SEDEX Pb-Zn Deposit, Qinling Orogenic Belt, China. Mineralium Deposita, 39(3): 380–395. https://doi.org/10.1007/s00126-004-0416-1Google Scholar
  40. Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566. https://doi.org/10.1016/s1367-9120(02)00022-6Google Scholar
  41. Ni, P., Wang, G. G., Cai, Y. T., et al., 2017. Genesis of the Late Jurassic Shizitou Mo Deposit, South China: Evidences from Fluid Inclusion, H O Isotope and Re Os Geochronology. Ore Geology Reviews, 81: 871–883. https://doi.org/10.1016/j.oregeorev.2016.08.013Google Scholar
  42. Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551–578. https://doi.org/10.2113/gsecongeo.67.5.551Google Scholar
  43. Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491–559Google Scholar
  44. Pham-Ngoc, C., Ishiyama, D., Tran, T. A., et al., 2016. Characteristic Features of REE and Pb-Zn-Ag Mineralizations in the Na Son Deposit, Northeastern Vietnam. Resource Geology, 66(4): 404–418. https://doi.org/10.1111/rge.12110Google Scholar
  45. Pinckney, D. M., Rafter, T. A., 1972. Fractionation of Sulfur Isotopes during Ore Deposition in the Upper Mississippi Valley Zinc-Lead District. Economic Geology, 67(3): 315–328. https://doi.org/10.2113/gsecongeo.67.3.315Google Scholar
  46. Polyakov., G. V., Tran, T. H., Akimtsev, V. A., et al., 1999. Ore and Geo-chemical Specialization of Permo-Triassic Ultramafic-Mafic Complexes in North Vietnam. Geologiya I Geofizika, 40(10): 1474–1487Google Scholar
  47. Roger, F., Leloup, P. H., Jolivet, M., et al., 2000. Long and Complex Thermal History of the Song Chay Metamorphic Dome (Northern Vietnam) by Multi-System Geochronology. Tectonophysics, 321(4): 449–466. https://doi.org/10.1016/s0040-1951(00)00085-8Google Scholar
  48. Roger, F., Maluski, H., Lepvrier, C., et al., 2012. LA-ICPMS Zircons U/Pb Dating of Permo-Triassic and Cretaceous Magmatisms in Northern Vietnam-Geodynamical Implications. Journal of Asian Earth Sciences, 48: 72–82. https://doi.org/10.1016/j.jseaes.2011.12.012Google Scholar
  49. Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826–842. https://doi.org/10.2113/gsecongeo.69.6.826Google Scholar
  50. Sun, H. S., Li, H., Evans, N. J., et al., 2017a. Volcanism, Mineralization and Metamorphism at the Xitieshan Pb-Zn Deposit, NW China: Insights from Zircon Geochronology and Geochemistry. Ore Geology Reviews, 88: 289–303. https://doi.org/10.1016/j.oregeorev.2017.05.010Google Scholar
  51. Sun, H. S., Li, H., Danišík, M., et al., 2017b. U-Pb and Re-Os Geochronol-ogy and Geochemistry of the Donggebi Mo Deposit, Eastern Tianshan, NW China: Insights into Mineralization and Tectonic Setting. Ore Geology Reviews, 86: 584–599. https://doi.org/10.1016/j.oregeorev.2017.03.020Google Scholar
  52. Tan, J., Liu, C., Yang, H., et al., 2018. Geochronology and Ore-Forming Material Source Constraints for Rouxianshan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan. Earth Science, 43(7): 2438–2448 (in Chinese with English Abstract).Google Scholar
  53. Tang, S., Ma, X., Li, X., et al., 2012. Pb Isotope Composition of the Fulai-chang Lead-Zinc Ore Deposit in Northwest Guizhou and Its Geological Implications. Geotectonica et Metallogenia, 36(4): 549–558 (in Chinese with English Abstract)Google Scholar
  54. Taylor, H. P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843–883. https://doi.org/10.2113/gsecongeo.69.6.843Google Scholar
  55. Todt, W., Cliff, R. A., Hanser, A., et al., 1996. Evaluation of a 202Pb-205Pb Double Spike for High-Precision Lead Isotope Analysis. Geophysical Monograph Series, 95: 429–437. https://doi.org/10.1029/gm095p0429Google Scholar
  56. Tran, T. H., Izokh, A. E., Polyakov, G. V., et al., 2008. Permo-Triassic Magmatism and Metallogeny of Northern Vietnam in Relation to the Emeishan Plume. Russian Geology and Geophysics, 49(7): 480–491. https://doi.org/10.1016/j.rgg.2008.06.005Google Scholar
  57. Wang, D. S., Liu, J. L., Mydung, T., et al., 2011. Geochronology, Geochemistry and Tectonic Significance of Granites in the Tinh Túc W-Sn Ore Deposits, Northeast Vietnam. Acta Petrologica Sinica, 27(9): 2795–2808 (in Chinese with English Abstract)Google Scholar
  58. Wang, D. S., Liu, J. L., Tran, M. D., et al., 2015. Sulfur and Lead Isotope Compositions of Sulfides in the Cho Dìen Pb-Zn Deposit, Northeast Vietnam, and Their Geological Implications. Geological Bulletin of China, 34(4): 757–768 (in Chinese with English Abstract)Google Scholar
  59. Won-In, K., Charusiri, P., 2003. Enhancement of Thematic Mapper Satellite Images for Geological Mapping of the Cho Dien Area, Northern Vietnam. International Journal of Applied Earth Observation and Geoinformation, 4(3): 183–193. https://doi.org/10.1016/s0303-2434(02)00034-xGoogle Scholar
  60. Wu, J. H., Li, H., Algeo, T. J., et al., 2018. Genesis of the Xianghualing Sn-Pb-Zn Deposit, South China: A Multi-Method Zircon Study. Ore Geology Reviews, 102: 220–239. https://doi.org/10.1016/j.oregeorev.2018.09.005Google Scholar
  61. Xia, X. P., Nie, X. S., Lai, C.-K., et al., 2016. Where was the Ailaoshan Ocean and when did It Open: A Perspective Based on Detrital Zircon U-Pb Age and Hf Isotope Evidence. Gondwana Research, 36: 488–502. https://doi.org/10.1016/j.gr.2015.08.006Google Scholar
  62. Xing, B., Xiang, J. F., Ye, H. S., et al., 2016. Rb-Sr Isochron Age of Sulfides and Sulfur Isotopic Composition from Lamellar Ores of the Luo-tuoshan Sulfur Polymetallic Deposit in Western Henan Province and Its Constraints on the Ore Genesis. Geological Bulletin of China, 35(6): 998–1014 (in Chinese with English Abstract)Google Scholar
  63. Xu, B., Jiang, S. Y., Luo, L., et al., 2017. Origin of the Granites and Related Sn and Pb-Zn Polymetallic Ore Deposits in the Pengshan District, Jiangxi Province, South China: Constraints from Geochronology, Geochemistry, Mineral Chemistry, and Sr-Nd-Hf-Pb-S Isotopes. Min-eralium Deposita, 52(3): 337–360. https://doi.org/10.1007/s00126-016-0659-7Google Scholar
  64. Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3/4): 239–254. https://doi.org/10.1016/s0040-1951(02)00646-7Google Scholar
  65. Yan, D. P., Zhou, M. F., Wang, C. Y., et al., 2006. Structural and Geo-chronological Constraints on the Tectonic Evolution of the Dulong-Song Chay Tectonic Dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4/5/6): 332–353. https://doi.org/10.1016/j.jseaes.2005.10.011Google Scholar
  66. Zartman, R. E., Doe, B. R., 1981. Plumbotectonics—The Model. Tectono-physics, 75(1/2): 135–162. https://doi.org/10.1016/0040-1951(81)90213-4Google Scholar
  67. Zhang, C. Q., Mao J. W., Wu, S. P., et al., 2005. Distribution, Characteristics and Genesis of Mississippi Valley-Type Lead Zinc Deposits in Sichuan-Yunnan-Guiz Hou Area. Mineral Deposits, 24(3): 336–348 (in Chinese with English Abstract)Google Scholar
  68. Zhou, J. X., Xiang, Z. Z., Zhou, M. F., et al., 2018. The Giant Upper Yangtze Pb-Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280–315. https://doi.org/10.1016/j.jseaes.2017.12.032Google Scholar
  69. Zhu, B. Q., Li, X. H., Dai, T. M., 1998. Isotope System Theory and Application to the Earth Sciences: On Crust-Mantle Evolution of Continent of China. Science Press, Beijing. 330 (in Chinese)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina
  2. 2.Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam
  3. 3.Centre of Excellence in Ore Deposits (CODES)University of TasmaniaHobartAustralia

Personalised recommendations