Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 131–141 | Cite as

Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

  • Chaowen Huang
  • Gaofeng DuEmail author
  • Huajun Jiang
  • Jianfeng Xie
  • Daohan Zha
  • Huan Li
  • Chun-Kit Lai
Article
  • 5 Downloads

Abstract

The Anjing Hitam Pb-Zn deposit in northern Sumatra (Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous-Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization: (I) sedimentary and (II) hydrothermal mineralization. Ore-related calcite from both stages I and II contains mainly liquid- and gas-liquid two-phase-type fluid inclusions (FI). For stage I ore-forming fluids, FI homogenization temperatures (Th) are 105 to 199 °C, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage II, the Th (206 to 267 °C) and salinity (19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids (probably from deep-lying plutons), whereas the stage II ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the Anjing Hitam deposit was a Carboniferous exhalative sedimentary (SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.

Key words

Anjing Hitam SEDEX C-O isotopes fluid inclusion Sumatra Indonesia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledge the anonymous reviewers for their critical comments and constructive suggestions, which have improved the quality of the paper greatly. This study was financially supported by the National Basic Research Program of China (No. 2014CB440901). The final publication is available at Springer via  https://doi.org/10.1007/s12583-019-0859-z.

References Cited

  1. Badham, J. P. N., Williams, P. J., 1981. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Economic Geology, 76(8): 2118–2127.  https://doi.org/10.2113/gsecongeo.76.8.2118 CrossRefGoogle Scholar
  2. Barber, A. J., Crow, M. J., 2003. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 6(1): 1–28.  https://doi.org/10.1016/s1342-937x(05)70642-0 CrossRefGoogle Scholar
  3. Basuki, N. I., 2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 11(1/2/3/4): 1–17.  https://doi.org/10.2113/11.1-4.1 Google Scholar
  4. Betts, P. G., Giles, D., Lister, G. S., 2003. Tectonic Environment of Shale-Hosted Massive Sulfide Pb-Zn-Ag Deposits of Proterozoic Northeastern Australia. Economic Geology, 98(3): 557–576.  https://doi.org/10.2113/gsecongeo.98.3.557 CrossRefGoogle Scholar
  5. Betts, P. G., Lister, G. S., 2002. Geodynamically Indicated Targeting Strategy for Shale-Hosted Massive Sulfide Pb-Zn-Ag Mineralisation in the Western Fold Belt, Mt Isa Terrane. Australian Journal of Earth Sciences, 49(6): 985–1010.  https://doi.org/10.1046/j.1440-0952.2002.00965.x CrossRefGoogle Scholar
  6. Brown, P. E., Lamb, W. M., 1989. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 53(6): 1209–1221.  https://doi.org/10.1016/0016-7037(89)90057-4 CrossRefGoogle Scholar
  7. Burrett, C., Zaw, K., Meffre, S., et al., 2014. The Configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31–51.  https://doi.org/10.1016/j.gr.2013.05.020 CrossRefGoogle Scholar
  8. Cameron, N. R., Bennett, J. D., Bridge, D. M., et al., 1982. The Geology of the Tapaktuan Quadrangle (0519), Sumatra. Scale 1: 250 000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. 19Google Scholar
  9. Cameron, N. R., Clarke, M. C. G., Aldiss, D. T., et al., 1980. The Geological Evolution of Northern Sumatra. Indonesian Petroleum Association, 1: 149–187Google Scholar
  10. Cao, D. T., Tuyen, N. H., Le, V. D., et al., 2005. Evolution of Faulting Tectonics in Southeast Asia. Crustal Deformation & Earthquake, 25(1): 51–60.  https://doi.org/10.14075/j.jgg.2005.01.010 Google Scholar
  11. Chen, Y. J., Ni, P., Fan, H. R., et al., 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085–2108 (in Chinese with English Abstract)Google Scholar
  12. Cooke, D. R., Bull, S. W., Large, R. R., et al., 2000. The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits. Economic Geology, 95(1): 1–18.  https://doi.org/10.2113/gsecongeo.95.1.1 CrossRefGoogle Scholar
  13. Crow, M. J., Barber, A. J., 2005. Map: Simplified Geological Map of Sumatra. Geological Society, London, Memoirs, 31(1): NP.2-NP.19.  https://doi.org/10.1144/gsl.mem.2005.031.01.17 Google Scholar
  14. Crow, M. J., van Leeuwen, T. M., 2005. Metallic Mineral Deposits. In: Barber, A. J., Crow, M. J., Milsom, J. S., eds., Sumatra: Geology, Resources and Tectonic Evolution. Geological Society of London, London. 147–174Google Scholar
  15. Deng, J., Wang, C. M., Bagas, L., et al., 2015. Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 50(8): 987–1006.  https://doi.org/10.1007/s00126-015-0584-1 CrossRefGoogle Scholar
  16. Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216–266.  https://doi.org/10.1016/j.gr.2017.02.005 CrossRefGoogle Scholar
  17. Gao, X. W., Yang, Z. Q., Wu, X. R., 2013. A Discussion on Mineralization within Magmatic Cycles, Sumatra (Indonesia). Geology and Mineral Resources of South China, 29(4): 299–307 (in Chinese with English Abstract)Google Scholar
  18. Genrich, J. F., Bock, Y., McCaffrey, R., et al., 2000. Distribution of Slip at the Northern Sumatran Fault System. Journal of Geophysical Research: Solid Earth, 105(B12): 28327–28341.  https://doi.org/10.1029/2000jb900158 Google Scholar
  19. Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada Short Course Series, Vancouver. 9–53Google Scholar
  20. Goodfellow, W. D., Lydon, J. W., 2007. Sedimentary Exhalative (SEDEX) Deposits. In: Goodfellow, W. D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, Toronto. 163–183Google Scholar
  21. Han, F., Sun, H. T., 1999. Metallogenic System of SEDEX Type Deposits: A Review. Earth Science Frontiers (China University of Geosciences, Beijing), 1: 139–142 (in Chinese with English Abstract)Google Scholar
  22. Hoefs, J., 1973. Stable Isotope Geochemistry. Springer-Verlag, Berlin-Heidelberg-New York. 140CrossRefGoogle Scholar
  23. Hou, Z. Q., Mo, X. X., Yang, Z. M., et al., 2006a. Metallogenesis in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2): 340–351 (in Chinese with English Abstract)Google Scholar
  24. Hou, Z. Q., Yang, Z. S., Xu, W. Y., et al., 2006b. Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337–358 (in Chinese with English Abstract)Google Scholar
  25. Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2017. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1): 130–143.  https://doi.org/10.1007/s12583-017-0747-3 CrossRefGoogle Scholar
  26. Hutchison, C. S., Taylor, D., 1978. Metallogenesis in SE Asia. Journal of the Geological Society, 135(4): 407–428.  https://doi.org/10.1144/gsjgs.135.4.0407 CrossRefGoogle Scholar
  27. Jamaludin, S. N. F., Pubellier, M., Menier, D., 2017. Structural Restoration of Carbonate Platform in the Southern Part of Central Luconia, Malaysia. Journal of Earth Science, 29(1): 1–14.  https://doi.org/10.1007/s12583-017-0812-y Google Scholar
  28. Janković, S., 2001. Tectonic Setting and Metallogenesis of the Principal Sectors of the Tethyan Eurasian Metallogenic Belt. Geotectonica et Metallogenia, 25(1/2): 14–36Google Scholar
  29. Kroopnick, P., Weiss, R. F., Craig, H., 1972. Total CO2, 13C, and Dissolved Oxygen-18O at Geosecs II in the North Atlantic. Earth and Planetary Science Letters, 16(1): 103–110.  https://doi.org/10.1016/0012-821x(72)90242-7 CrossRefGoogle Scholar
  30. Laznicka, P., 2006. Giant Metallic Deposits: Future Sources of Industrial Metals. Economic Geology, 101(7): 1445–1446.  https://doi.org/10.1007/3-540-33092-5 CrossRefGoogle Scholar
  31. Leach, D. L., Bradley, D. C., Huston, D., et al., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 105(3): 593–625.  https://doi.org/10.2113/gsecongeo.105.3.593 CrossRefGoogle Scholar
  32. Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100: 561–607Google Scholar
  33. Li, H., Sun, H. S., Wu, J. H., et al., 2017. Re-Os and U-Pb Geochronology of the Shazigou Mo Polymetallic Ore Field, Inner Mongolia: Implications for Permian-Triassic Mineralization at the Northern Margin of the North China Craton. Ore Geology Reviews, 83: 287–299.  https://doi.org/10.1016/j.oregeorev.2016.12.010 CrossRefGoogle Scholar
  34. Li, H., Xi, X. S., 2015. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, 65: 375–389.  https://doi.org/10.1016/j.oregeorev.2014.10.001 CrossRefGoogle Scholar
  35. Li, H., Xi, X. S., Wu, C. M., et al., 2013. Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica: English Edition, 87(2): 486–500.  https://doi.org/10.1111/1755-6724.12063 CrossRefGoogle Scholar
  36. Li, K., Zhao, S., Tang, Z., et al., 2018. Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science—Journal of China University of Geosciences, 43(7): 2449–2464.  https://doi.org/10.3799/dqkx.2018.554 (in Chinese with English Abstract)CrossRefGoogle Scholar
  37. Liu, J. L., Wang, A. J., Xia, H. R., et al., 2010. Cracking Mechanisms during Galena Mineralization in a Sandstone-Hosted Lead-Zinc Ore Deposit: Case Study of the Jinding Giant Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 45(6): 567–582.  https://doi.org/10.1007/s00126-010-0294-7 CrossRefGoogle Scholar
  38. Liu, Y. C., Hou, Z. Q., Yang, Z. S., et al., 2008. Some Insights and Advances in Study of Mississippi Valley-Type (MVT) Lead-Zinc Deposits. Mineral Deposits, 27(2): 253–264 (in Chinese with English Abstract)Google Scholar
  39. Liu, Y., Zhu, Z. M., Chen, C., et al., 2015. Geochemical and Mineralogical Characteristics of Weathered Ore in the Dalucao REE Deposit, Mianning-Dechang REE Belt, Western Sichuan Province, Southwestern China. Ore Geology Reviews, 71: 437–456.  https://doi.org/10.1016/j.oregeorev.2015.06.009 CrossRefGoogle Scholar
  40. Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing. 488 (in Chinese)Google Scholar
  41. Lu, H. Z., Shan, Q., 2015. Composition of Ore Forming Fluids in Metal Deposits and Fluid Inclusion. Acta Petrologica Sinica, 31(4): 1108–1116 (in Chinese with English Abstract)Google Scholar
  42. Lydon, J. W., 1983. Applications of Computer Modeling to the Study of the Genesis of Stratiform Sulfide Deposits. Journal of the International Association for Mathematical Geology, 15(1): 231–232CrossRefGoogle Scholar
  43. Lydon, J. W., 1996. Sedimentary Exhalative Sulphides (SEDEX). In: Eckstrand, O. R., Sinclair, W. D., Thorpe, R. I., eds., Geology of Canadian Mineral Deposit Types. Geological Survey of Canada, Ottawa. 130–152Google Scholar
  44. Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605–623.  https://doi.org/10.1080/08120099608728282 CrossRefGoogle Scholar
  45. Metcalfe, I., 1997. The Palaeo-Tethys and Palaeozoic-Mesozoic Tectonic Evolution of Southeast Asia. In: Dheeradilok, P., Hinthong, C., Chaodumrong, P., et al., eds., Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Department of Mineral Resources, Bangkok, Thailand. 19–24Google Scholar
  46. Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566.  https://doi.org/10.1016/s1367-9120(02)00022-6 CrossRefGoogle Scholar
  47. Miall, A. D., 1984. Principles of Sedimentary Basin Analysis. Springer-Verlag, New York. 490CrossRefGoogle Scholar
  48. Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York. 517–611Google Scholar
  49. Pei, R. F., Mei, Y. X., Qu, H. Y., et al., 2013. New Recognized Intellect for Prospecting Large-Superlarge Mineral Deposits. Mineral Deposits, 34(4): 661–672 (in Chinese with English Abstract)Google Scholar
  50. Reynolds, N. A., 2004. Geology of the Anjing Hitam Resource, Dairi Project, North Sumatra, Indonesia. Herald Resources Ltd., Sumatra. 95Google Scholar
  51. Roedder, E., 1984. Fluid Inclusions. In: Ribbe, P. H., ed., Reviews in Mineralogy, Vol. 12. Mineralogical Society of America, Washington. 644CrossRefGoogle Scholar
  52. Russell, M. J., 1983. Major Sediment-Hosted Zinc+Lead Deposits: Formation from Hydrothermal Convection Cells that Deepen during Crustal Extension. In: Sangster, D. F., ed., Short Course in Sediment-Hosted Stratiform Lead-Zinc Deposits. Mineralogical Association of Canada, Victoria, Canada. 251–282Google Scholar
  53. Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826–842.  https://doi.org/10.2113/gsecongeo.69.6.826 CrossRefGoogle Scholar
  54. Şengör, A. M. C., 1979. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 279(5714): 590–593.  https://doi.org/10.1038/279590a0 CrossRefGoogle Scholar
  55. Şengör, A. M. C., 1987. Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 15(1): 213–244.  https://doi.org/10.1146/annurev.ea.15.050187.001241 CrossRefGoogle Scholar
  56. Sheppard, S. M. F., Nielsen, R. L., Taylor, H. P., 1971. Hydrogen and Oxygen Isotope Ratios in Minerals from Porphyry Copper Deposits. Economic Geology, 66(4): 515–542.  https://doi.org/10.2113/gsecongeo.66.4.515 CrossRefGoogle Scholar
  57. Silic, J., Seed, R., 2001. The Geophysics of the Anjing Hitam Deposit: From Mapping Shales to a Major Discovery. ASEG Extended Abstracts, 2001(1): 1–4.  https://doi.org/10.1071/aseg2001ab132 CrossRefGoogle Scholar
  58. Sillitoe, R. H., 1978. Metallogenic Evolution of a Collisional Mountain Belt in Pakistan: A Preliminary Analysis. Journal of the Geological Society, 135(4): 377–387.  https://doi.org/10.1144/gsjgs.135.4.0377 CrossRefGoogle Scholar
  59. Stöcklin, J., 1974. Possible Ancient Continental Margins in Iran. In: Burk, C. A., Drake, C. L., eds., The Geology of Continental Margins. Springer-Verlag, Berlin. 873–887Google Scholar
  60. Sun, H. S., Wu, G. B., Liu, L., et al., 2011. Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits. Earth Science—Journal of China University of Geosciences, 36(2): 299–306 (in Chinese with English Abstract)Google Scholar
  61. Taylor, H. P. J., 1997. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. Geochemistry of Hydrothermal Ore Deposits, 2: 229–302Google Scholar
  62. Turner, R. J. W., 1992. Formation of Phanerozoic Stratiform Sediment-Hosted Zinc-Lead Deposits: Evidence for the Critical Role of Ocean Anoxia. Chemical Geology, 99(1/2/3): 165–188.  https://doi.org/10.1016/0009-2541(92)90037-6 CrossRefGoogle Scholar
  63. Ueno, K., 2003. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1): 1–24.  https://doi.org/10.1016/s0031-0182(02)00708-3 CrossRefGoogle Scholar
  64. Ulmer, P., Trommsdorff, V., 1995. Serpentine Stability to Mantle Depths and Subduction-Related Magmatism. Science, 268(5212): 858–861.  https://doi.org/10.1126/science.268.5212.858 CrossRefGoogle Scholar
  65. Wang, C. M., Bagas, L., Lu, Y. J., et al., 2016. Terrane Boundary and Spatio-Temporal Distribution of Ore Deposits in the Sanjiang Tethyan Orogen: Insights from Zircon Hf-Isotopic Mapping. Earth-Science Reviews, 156: 39–65.  https://doi.org/10.1016/j.earscirev.2016.02.008 CrossRefGoogle Scholar
  66. Wang, C. M., Deng, J., Bagas, L., et al., 2017. Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293–310.  https://doi.org/10.1016/j.gr.2017.04.008 CrossRefGoogle Scholar
  67. Wang, C. M., Deng, J., Carranza, E. J. M., et al., 2014. Nature, Diversity and Temporal-Spatial Distributions of Sediment-Hosted Pb-Zn Deposits in China. Ore Geology Reviews, 56: 327–351.  https://doi.org/10.1016/j.oregeorev.2013.06.004 CrossRefGoogle Scholar
  68. Wang, L. J., 1998. Analysis and Study of the Composition of Fluid Inclusions. Geological Review, 44(5): 496–501 (in Chinese with English Abstract)Google Scholar
  69. Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2): 315–332.  https://doi.org/10.1007/s12583-016-0921-7 CrossRefGoogle Scholar
  70. Wilkinson, J. J., 2014. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives. Treatise on Geochemistry, 219–249.  https://doi.org/10.1016/B978-0-08-095975-7.01109-8 Google Scholar
  71. Wu, J., Suppe, J., 2018. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6): 1304–1318.  https://doi.org/10.1007/s12583-017-0813-x CrossRefGoogle Scholar
  72. Zhang, D. H., 1992. Aqueous Phase Composition Characteristics of Mineral Fluid Inclusions and Its Significance in Ore Genesis. Earth Science—Journal of China University of Geosciences, 17(6): 59–70 (in Chinese with English Abstract)Google Scholar
  73. Zhang, H. R., Hou, Z. Q., Yang, Z. M., 2010. Metallogenesis and Geodynamics of Tethyan Metallogenic Domain: A Review. Mineral Deposits, 29(1): 113–133 (in Chinese with English Abstract)Google Scholar
  74. Zheng, Y. F., 2001. Theoretical Modeling of Stable Isotope Systems and Its Application to the Geochemistry of Hydrothermal Ore Deposits. Mineral Deposits, 20(1): 57–70 (in Chinese with English Abstract)Google Scholar
  75. Zhou, Y., Duan, Q. F., Cao, L., et al., 2018. Microthermonmetry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science—Journal of China University of Geosciences, 43(7): 2465–2483.  https://doi.org/10.3799/dqkx.2018.520 (in Chinese with English Abstract)CrossRefGoogle Scholar
  76. Zhu, H. P., Wang, L. J., Liu, J. M., 2003. Determination of Quadruple Mass Spectrometer for Gaseous Composition of Fluid Inclusion from Different Mineralization Stages. Acta Petrologica Sinica, 19(2): 314–318 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina
  2. 2.Geological Survey of Anhui ProvinceHefeiChina
  3. 3.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Research Institute of Hunan Provincial Nonfenous Metals Geological Exploration BureauChangshaChina
  5. 5.Hunan Key Laboratory of Land Resources Evaluation and UtilizationChangshaChina
  6. 6.Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam
  7. 7.Centre of Excellence in Ore Deposits (CODES)University of TasmaniaHobartAustralia

Personalised recommendations