Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 1–19 | Cite as

Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia

  • Zhengwei ZhangEmail author
  • Qiao Shu
  • Xiaoyong YangEmail author
  • Chengquan Wu
  • Chaofei Zheng
  • Jinhong Xu
Article
  • 13 Downloads

Abstract

The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in this archipelagic area, generating metallogenic belts in multi-terranes. Since the Late Paleozoic, opening and closure of the Paleotethys and Neotethys led to multiple suture zones between different blocks, mainly between the Indochina terrane, the Nambung terrane, the Sibumasu terrane and the West Myanmar terrane. During the Mesozoic to Cenozoic, the formation of accreted terranes and their related islands was caused by subduction and collision processes between the Pacific and Australian plates toward the Eurasian Continent, forming Sundaland and its affiliated islands, the Philippines and its subsidiary islands, the Papua New Guinea terrane and its related islands and the Sunda epicontinental arc system. Within the margin of terranes resulted in the structural transfer zones, their secondary tectonic units can be divided into island arc belts, back-arc basins, suture zones, marginal fold belts and orogenic belts. The metallogenic assemblages are mainly distributed within these structural zones of the terranes. According to the relationship between these tectonic units and the distribution of mineral resources, the tectonic-metallogenic belts can be divided into 24 metallogenic belts in Southeast Asia. They are characterized by a diversity and frequency of metallogenic material combination which is likely to reflect the complexity of the material distribution during mineralization processes, mostly by the structural transformation during the dissociation- convergence process between multiple terranes. Therefore, the formation of ore deposits was not only restricted by the evolution (opening and closure) of Paleo- and Neotethys, but may also be controlled by the interaction of the terranes with different tectonic attributes which provided multiple sources of metallogenic material.

Key words

Southeast Asia terrane groups metallogenetic belt subduction-collision Tethys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research is financially supported by the Natural Science Foundation of China (Nos. 41573039; 41673040; U1603245). Mr Wijaya Lawrence provided many supports for field trips and exploration data. The final publication is available at Springer via  https://doi.org/10.1007/s12583-019-0858-0.

References Cited

  1. Abbott, L. D., 1995. Neogene Tectonic Reconstruction of the Adelbert-Finisterre-New Britain Collision, Northern Papua New Guinea. Journal of Southeast Asian Earth Sciences, 11(1): 33–51.  https://doi.org/10.1016/0743-9547(94)00032-a CrossRefGoogle Scholar
  2. Ali, J. R., Hall, R., 1995. Evolution of the Boundary between the Philippine Sea Plate and Australia: Palaeomagnetic Evidence from Eastern Indonesia. Tectonophysics, 251(1/2/3/4): 251–275.  https://doi.org/10.1016/0040-1951(95)00029-1 CrossRefGoogle Scholar
  3. Bacuta, G. C. Jr., Kay, R. W., Gibbs, A. K., et al., 1990. Platinum-Group Element Abundance and Distribution in Chromite Deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines. Journal of Geochemical Exploration, 37(1): 113–145.  https://doi.org/10.1016/0375-6742(90)90086-p CrossRefGoogle Scholar
  4. Bamford, R. W. E., 1972. The Mount Fubilan (Ok Tedi) Porphyry Copper Deposit, Territory of Papua and New Guinea. Economic Geology, 67(8): 1019–1033.  https://doi.org/10.2113/gsecongeo.67.8.1019 CrossRefGoogle Scholar
  5. Barber, A. J., Crow, M. J., 2009. Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys. Island Arc, 18(1): 3–20.  https://doi.org/10.1111/j.1440-1738.2008.00631.x CrossRefGoogle Scholar
  6. Barber, A. J., Crow, M. J., Milsom, J. S., 2005. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs, 31(1): 234–259.  https://doi.org/10.1144/gsl.mem.2005.031.01.14 CrossRefGoogle Scholar
  7. Bardossy, G., 1994. Carboniferous to Jurassic Bauxite Deposits as Paleoclimatic and Paleogeographic Indicators. CSPG Special Publications, 17: 283–293Google Scholar
  8. Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 1019–1029.  https://doi.org/10.1029/2002tc001398 CrossRefGoogle Scholar
  9. Barr, S. M., Charusiri, P., 2011. Volcanic Rocks. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London, Memoirs, 37(2): 415–439Google Scholar
  10. Bertrand, G., Rangin, C., 2003. Tectonics of the Western Margin of the Shan Plateau (Central Myanmar): Implication for the India-Indochina Oblique Convergence since the Oligocene. Journal of Asian Earth Sciences, 21(10): 1139–1157.  https://doi.org/10.1016/s1367-9120(02)00183-9 CrossRefGoogle Scholar
  11. Boonsoong, A., Panjasawatwong, Y., Metparsopsan, K., 2011. Petrochemistry and Tectonic Setting of Mafic Volcanic Rocks in the Chon Daen-Wang Pong Area, Phetchabun, Thailand. Island Arc, 20(1): 107–124.  https://doi.org/10.1111/j.1440-1738.2010.00748.x CrossRefGoogle Scholar
  12. Bunopas, S., Vella, P., 1983. Tectonic and Geologic Evolution of Thailand. In: Nutalaya, P., ed., Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia, Haad Yai. 307–322Google Scholar
  13. Burrett, C., Zaw, K., Meffre, S., et al., 2014. The Configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31–51.  https://doi.org/10.1016/j.gr.2013.05.020 CrossRefGoogle Scholar
  14. Carlile, J. C., Davey, G. R., Kadir, I., et al., 1998. Discovery and Exploration of the Gosowong Epithermal Gold Deposit, Halmahera, Indonesia. Journal of Geochemical Exploration, 60(3): 207–227.  https://doi.org/10.1016/s0375-6742(97)00048-4 CrossRefGoogle Scholar
  15. Carlile, J. C., Digdowirogo, S., Darius, K., 1990. Geological Setting, Characteristics and Regional Exploration for Gold in the Volcanic Arcs of North Sulawesi, Indonesia. Journal of Geochemical Exploration, 35(1/2/3): 105–140.  https://doi.org/10.1016/0375-6742(90)90037-b CrossRefGoogle Scholar
  16. Carlile, J. C., Kirkegaard, A. G., 1985. Porphyry Copper Gold Deposits of the Tombulilato District, North Sulawesi, Indonesia: An Extention of the Phlippine Porphyry Copper Gold Province. Asian Mining, (5): 351–363Google Scholar
  17. Carlile, J. C., Mitchell, A. H. G., 1994. Magmatic Arcs and Associated Gold and Copper Mineralization in Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 91–142.  https://doi.org/10.1016/0375-6742(94)90022-1 CrossRefGoogle Scholar
  18. Carswell, J. T., 1990. Wau Gold Deposits. In: Hughes, F. E., ed., Geology of Mineral Deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne. 1763–1767Google Scholar
  19. Charlton, T. R., 2000. Tertiary Evolution of the Eastern Indonesia Collision Complex. Journal of Asian Earth Sciences, 18(5): 603–631.  https://doi.org/10.1016/s1367-9120(99)00049-8 CrossRefGoogle Scholar
  20. Chen, X. F., Ye, J. H., Xiang, Y. C., et al., 2017. Geological Characteristics and Exploration Potential of the Important Deposits in Southeast Asia. Geological Bulletin of China, 36(1): 50–65 (in Chinese with English Abstract)Google Scholar
  21. Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 975–990 (in Chinese with English Abstract)Google Scholar
  22. Chu, L. H., Singh, D. S., 1986. The Nature and Potential of Gold Mineralization in Kelantan, Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 19: 431–440Google Scholar
  23. Chung, S. K., 1993. Geology of the Kuching Area West Sarawak, Kuala Lumpur. Malaysia Ministry of Primary Industries, Kuala Lumpur. 320Google Scholar
  24. Clements, B., Hall, R., 2007. Cretaceous to Late Miocene Stratigraphic and Tectonic Evolution of West Java, Indonesia. In: Proceedings 31st Annual Convention, Indonesian Petroleum Association, Indonesia. 87–104Google Scholar
  25. Clements, B., Hall, R., 2008. U-Pb Dating of Detrital Zircons from West Java Show Complex Sundaland Provenance. In: Proceedings 31st Annual Convention, Indonesian Petroleum Association, Indonesia. 1–18Google Scholar
  26. Cloos, M., 1997. Anatomy of a Mine: The Discovery and Development of Grasberg. Geotimes, 42(1): 16–20Google Scholar
  27. Cobbing, E., 2005. Granite. In: Barker, A. J., Crow, M. J., Milson, J. S., eds., Sumatra: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 31(1): 54–62Google Scholar
  28. Cromie, P., Zaw, K., Ryan, C., 2010. Geological Setting, Gold-Ore Paragenesis and Trace Element Geochemistry of the Gold and Copper depOsits in the Sepon Mineral District, Lao PDR. In: Proceedings of 13th Quadrennial International Association on Genesis of Ore Deposits (IAGOD) Symposium. 6–9Google Scholar
  29. Daines, S. R., 1985. Structural History of the West Natuna Basin and the Tectonic Evolution of the Sunda Region. In: Proceedings of 14th Annual Convention, Indonesian Petroleum Association, Indonesia. 39–65Google Scholar
  30. Davies, H. L., Howell, W. J. S., Fardon, R. S. H., et al., 1978. History of the Ok Tedi Porphyry Copper Prospect, Papua New Guinea. Economic Geology, 73(5): 796–809.  https://doi.org/10.2113/gsecongeo.73.5.796 CrossRefGoogle Scholar
  31. Elburg, M., Foden, J., 1998. Temporal Changes in Arc Magma Geochemistry, Northern Sulawesi, Indonesia. Earth and Planetary Science Letters, 163(1/2/3/4): 381–398.  https://doi.org/10.1016/s0012-821x(98)00143-5 Google Scholar
  32. Etrew, R. L., 1995. Porphyry Copper-Gold Deposits of the Southwest Pacific. Mining Engineering, 47 (1): 33–38Google Scholar
  33. Fan, W. M., Wang, Y. J., Zhang, A. M., et al., 2010. Permian Arc-Back-Arc Basin Development along the Ailaoshan Tectonic Zone: Geochemical, Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks, Southwest China. Lithos, 119(3/4): 553–568.  https://doi.org/10.1016/j.lithos.2010.08.010 CrossRefGoogle Scholar
  34. Fang, N. Q., Liu, B. P., Feng, Q. L., et al., 1994. Late Palaeozoic and Triassic Deep-Water Deposits and Tectonic Evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan. Journal of Southeast Asian Earth Sciences, 9(4): 363–374.  https://doi.org/10.1016/0743-9547(94)90048-5 CrossRefGoogle Scholar
  35. Faure, M., Marchadier, Y., Rangin, C., 1989. Pre-Eocene Synmetamorphic Structure in the Mindoro-Romblon-Palawan Area, West Philippines, and Implications for the History of Southeast Asia. Tectonics, 8(5): 963–979.  https://doi.org/10.1029/tc008i005p00963 CrossRefGoogle Scholar
  36. Foden, J. D., Varne, R., 1980. The Petrology and Tectonic Setting of Quaternary—Recent Volcanic Centres of Lombok and Sumbawa, Sunda Arc. Chemical Geology, 30(3): 201–226.  https://doi.org/10.1016/0009-2541(80)90106-0 CrossRefGoogle Scholar
  37. Fontaine, H., Gafoer, S., 1989. The Pre-Tertiary Fossils of Sumatra and Their Environments. CCOP Technical Papers, United Nations, Bangkok. 19: 59–69Google Scholar
  38. Fuller, M., Ali, J. R., Moss, S. J., et al., 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17(1/2): 3–24.  https://doi.org/10.1016/s0743-9547(98)00057-9 CrossRefGoogle Scholar
  39. Fuller, M., Haston, R., Lin, J. L., et al., 1991. Tertiary Paleomagnetism of Regions around the South China Sea. Journal of Southeast Asian Earth Sciences, 6(3/4): 161–184.  https://doi.org/10.1016/0743-9547(91)90065-6 CrossRefGoogle Scholar
  40. Funnel, F. R., 1990. Wafi River Gold Prospect. In: Hughes, F. E., ed., Geology of Mineral Deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne. 1731–1733Google Scholar
  41. Gao, X. W., Wu, X. R., Yang, Z. Q., 2015. Two Types of Terrain and Regional Mineralization in Sumatra, Indonesia. Geological Bulletin of China, 34(4): 792–801 (in Chinese with English Abstract)Google Scholar
  42. Gatinsky, Y. G., Hutehson, C. S., 1987. Cathaysia, Gondwanaland and the Palaeotethys in the Evolution of Continental Southeast Asia. Geologieal Society of Malaysia Bulletin, 20: 179–199Google Scholar
  43. Ghosh, B., Bhatta, K., 2014. Podiform Chromitites in Lherzolitic Mantle Rocks (Andaman Ophiolite, India): The Role of Magma/rock Interaction and Parental Melt Composition. Bulletin de la Societe Géologique de France, 185(2): 123–130.  https://doi.org/10.2113/gssgfbull.185.2.123 CrossRefGoogle Scholar
  44. Giddings, J. W., Sunata, W., Pigram, C., 1993. Reinterpretation of Palaeomagnetic Results from the Bird’s Head, Irian Jaya: New Constraints on the Drift History of the Kemum Terrane. Exploration Geophysics, 24(2): 283–290.  https://doi.org/10.1071/eg993283 CrossRefGoogle Scholar
  45. Gow, P. A., Walshe, J. L., 2005. The Role of Preexisting Geologic Architec ture in the Formation of Giant Porphyry-Related Cu±Au Deposits: Examples from New Guinea and Chile. Economic Geology, 100(5): 819–833.  https://doi.org/10.2113/gsecongeo.100.5.819 CrossRefGoogle Scholar
  46. Hall, R., 1997. Reconstructing SE Asia. In: Hall, R., Blundell, D., eds., Tectonic Evolution of Southeast Asia. Geological Society, London, Special Publications, 106: 153–184Google Scholar
  47. Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353–431.  https://doi.org/10.1016/s1367-9120(01)00069-4 CrossRefGoogle Scholar
  48. Hall, R., Sevastjanova, I., 2012. Australian Crust in Indonesia. Australian Journal of Earth Sciences, 59(6): 827–844.  https://doi.org/10.1080/08120099.2012.692335 CrossRefGoogle Scholar
  49. Hamilton, W. B., 1979. Tectonics of the Indonesian region. U.S. Printing Office, Washington D.C.. 345 Google Scholar
  50. Hamilton, W. B., 1988. Plate Tectonics and Island Arcs. Geological Society of America Bulletin, 100(10): 1503–1527.  https://doi.org/10.1130/0016-7606(1988)100<1503:ptaia>2.3.co;2 CrossRefGoogle Scholar
  51. Hayashi, M., 1988. The Hydrocarbon Potential and Tectonics of Indochina. Journal of Petroleum Geology, 11(2): 219–232.  https://doi.org/10.1111/j.1747-5457.1988.tb00815.x CrossRefGoogle Scholar
  52. Hetley, G. A., Heπy, D. D., 1990. Porgera Gold Deposit. In: Hughes, F. E., ed., Geology of Mineral Deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne. 1717–1724Google Scholar
  53. Hou, Z. Q., Zhang, H. R., 2014. Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 70: 346–384.  https://doi.org/10.1016/j.oregeorev.2014.10.026 CrossRefGoogle Scholar
  54. Huchon, P., Nguyen, T. N. H., Chamot, R. N., 2001. Propagation of Continent Break-up in the South-Western South China Sea. In: Wilson, R. C. L., Beslier, M. O., Whitmarsh, R. B., et al., eds., Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Geological Society, London, Special Publication, 187: 31–50Google Scholar
  55. Hutchison, C. S., 1975. Ophiolite in Southeast Asia. Geological Society of America Bulletin, 86(6): 797–806.  https://doi.org/10.1130/0016-7606(1975)86<797:oisa>2.0.co;2 CrossRefGoogle Scholar
  56. Hutchison, C. S., 1986. Formation of Marginal Seas in Southeast Asia by Rifting of the Chinese and Australian Continental Margins and Implications for the Borneo Region. Cheminform, 59(36): 7215–7229Google Scholar
  57. Hutchison, C. S., 1988. The Tin Metallogenic Provinces of Southeast Asia and China: A Gondwanaland Inheritance. In: Hutchison, C. S., Geology of Tin Deposits in Asia and the Pacific. Springer Verlag, Berlin. 225–235Google Scholar
  58. Hutchison, C. S., 1994. Gondwana and Cathaysian Blocks, Palaeotethys Sutures and Cenozoic Tectonics in Southeast Asia. Oxford University Press, New York. 388–405Google Scholar
  59. Hutchison, C. S., 2004. Marginal Basin Evolution: The Southern South China Sea. Marine and Petroleum Geology, 21(9): 1129–1148.  https://doi.org/10.1016/j.marpetgeo.2004.07.002 CrossRefGoogle Scholar
  60. Hutchison, C. S., 2010. Oroclines and Paleomagnetism in Borneo and South-East Asia. Tectonophysics, 496(1/2/3/4): 53–67.  https://doi.org/10.1016/j.tecto.2010.10.008 CrossRefGoogle Scholar
  61. Imai, A., 2000. Genesis of the Mamut Porphyry Copper Deposit, Sabah, East Malaysia. Resource Geology, 50(1): 1–23.  https://doi.org/10.1111/j.1751-3928.2000.tb00052.x CrossRefGoogle Scholar
  62. Jobson, D. H., Boulter, C. A., Foster, R. P., 1994. Structural Controls and Genesis of Epithermal Gold-Bearing Breccias at the Lebong Tandai Mine, Western Sumatra, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 409–428.  https://doi.org/10.1016/0375-6742(94)90034-5 Google Scholar
  63. Kamvong, T., Zaw, K., 2005. Geology and Genesis of the Phu Lon Copper-Gold Skarn Deposit, Northeast Thailand, In: Wannakao, L., ed., In: Proceedings of the International Conference on Geology, Geotechnology and Mineral Resources of Indochina. 310–318Google Scholar
  64. Kamvong, T., Zaw, K., Meffre, S., 2007. Possible Adakitic Porphyries and Their Tectonomagmatic and Metallogenic Implications: Evidence from the Northern Loei Fold Belt, Thailand and Laos (Extended Abstract). 9th SGA Biennial Meeting Mineral Exploration and Research: Digging Deeper, Dublin. 399–402Google Scholar
  65. Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165–184CrossRefGoogle Scholar
  66. Katili, J. A., 1989. Evolution of the Southeast Asian Arc Complex. Geology Indonesia, 21: 113–143Google Scholar
  67. Katz, M. B., 1993. The Kannack Complex of the Vietnam Kontum Massif of the Indochina Block: An Exotic Fragment of Precambrian Gondwanaland. Gondwana Research, 8: 161–164Google Scholar
  68. Khan, P. K., Shamim, S., Mohanty, M., et al., 2017. Myanmar-Andaman-Sumatra Subduction Margin Revisited: Insights of Arc-Specific Deformations. Journal of Earth Science, 28(4): 683–694.  https://doi.org/10.1007/s12583-017-0752-6 CrossRefGoogle Scholar
  69. Konyukhov, A. I., 2009. Geological Structure, Sedimentation Conditions, and Petroleum Potential of Sedimentary Basins in Southeast Asia. Lithology and Mineral Resources, 44(5): 427–440.  https://doi.org/10.1134/s0024490209050022 CrossRefGoogle Scholar
  70. Kosaka, H., Wakita, K., 1978. Some Geologic Features of the Mamut Porphyry Copper Deposit, Sabah, Malaysia. Economic Geology, 73(5): 618–627.  https://doi.org/10.2113/gsecongeo.73.5.618 CrossRefGoogle Scholar
  71. Lai, C. K., Meffre, S., Crawford, A. J., et al., 2014. The Western Ailaoshan Volcanic Belts and their SE Asia Connection: A New Tectonic Model for the Eastern Indochina Block. Gondwana Research, 26(1): 52–74.  https://doi.org/10.1016/j.gr.2013.03.003 CrossRefGoogle Scholar
  72. Liu, B. P., Feng, Q. L., Chonglakmani, C., et al., 2002. Framework of Paleotethyan Archipelago Ocean of Western Yunnan and Its Elongation towards North and South. Earth Science Frontiers, 9(3): 161–171 (in Chinese with English Abstract)Google Scholar
  73. Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311–314.  https://doi.org/10.1130/g37342.1 CrossRefGoogle Scholar
  74. Liu, J. L., Tran, M. D., Tang, Y., et al., 2012. Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt, NW Vietnam: Geochronology, Geochemistry and Tectonic Implications. Gondwana Research, 22(2): 628–644.  https://doi.org/10.1016/j.gr.2011.10.011 CrossRefGoogle Scholar
  75. Lu, Y. X., Liu, H. G., Huang, J. N., et al., 2009. Preliminary Division of the Metallogenetic Belts in the Central South Peninsula of Southeast Asia and Their Regional ore-Forming Characteristics. Geological Bulletin of China, 28(2/3): 314–325 (in Chinese with English Abstract)Google Scholar
  76. Mahéo, G., Fayoux, X., Guillot, S., et al., 2006. Relicts of an Intra-Oceanic Arc in the Sapi-Shergol Mélange Zone (Ladakh, NW Himalaya, India): Implications for the Closure of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 26(6): 695–707.  https://doi.org/10.1016/j.jseaes.2005.01.004 CrossRefGoogle Scholar
  77. Manaka, T., Zaw, K, Meffre, S., 2008. Geological and Tectonic Setting of Cu-Au Deposits in Northern Lao PDR. In: Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes. 516: 24–26Google Scholar
  78. Manaka, T., Zaw, K., Meffre, S., et al., 2014. The Ban Houayxai Epithermal Au-Ag Deposit in the Northern Lao PDR: Mineralization Related to the Early Permian Arc Magmatism of the Truong Son Fold Belt. Gondwana Research, 26(1): 185–197.  https://doi.org/10.1016/j.gr.2013.08.024 CrossRefGoogle Scholar
  79. Mason, D. R., McDonald, J. A., 1978. Intrusive Rocks and Porphyry Copper Occurrences of the Papua New Guinea-Solomon Islands Region; A Reconnaissance Study. Economic Geology, 73(5): 857–877.  https://doi.org/10.2113/gsecongeo.73.5.857 CrossRefGoogle Scholar
  80. McClay, K., Dooley, T., Ferguson, A., et al., 2000. Tectonic Evolution of the Sanga Sanga Block, Mahakam Delta, Kalimantan, Indonesia. AAPG Bulletin, 84(6): 765–786.  https://doi.org/10.1306/a96733ec-1738-11d7-8645000102c1865d Google Scholar
  81. McDowell, F. W., McMahon, T. P., Warren, P. Q., et al., 1996. Pliocene Cu-Au-Bearing Igneous Intrusions of the Gunung Bijih (Ertsberg) District, Irian Jaya, Indonesia: K-Ar Geochronology. The Journal of Geology, 104(3): 327–340.  https://doi.org/10.1086/629828 CrossRefGoogle Scholar
  82. Meldrum, S. J., Aquino, R. S., Gonzales, R. I., et al., 1994. The Batu Hijau Porphyry Copper-Gold Deposit, Sumbawa Island, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 203–220.  https://doi.org/10.1016/0375-6742(94)90025-6 Google Scholar
  83. Mertig, H. J., Rubin, J. N., Kyle, J. R., 1994. Skarn Cu-Au Orebodies of the Gunung Bijih (Ertsberg) District, Irian Jaya, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 179–202.  https://doi.org/10.1016/0375-6742(94)90024-8 Google Scholar
  84. Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566.  https://doi.org/10.1016/s1367-9120(02)00022-6 CrossRefGoogle Scholar
  85. Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3–21.  https://doi.org/10.1016/j.gr.2010.02.016 CrossRefGoogle Scholar
  86. Metcalfe, I., 2012. Changhsingian (Late Permian) Conodonts from Son La, Northwest Vietnam and Their Stratigraphic and Tectonic Implications. Journal of Asian Earth Sciences, 50: 141–149.  https://doi.org/10.1016/j.jseaes.2012.01.002 CrossRefGoogle Scholar
  87. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33.  https://doi.org/10.1016/j.jseaes.2012.12.020 CrossRefGoogle Scholar
  88. Milesi, J. P., Marcoux, E., Nehlig, P., et al., 1994. Cirotan, West Java, Indonesia: A 1.7 Ma Hybrid Epithermal Au-Ag-Sn-W Deposit. Economic Geology, 89(2): 227–245.  https://doi.org/10.2113/gsecongeo.89.2.227 CrossRefGoogle Scholar
  89. Mitchell, A. H. G., 1979. Guides to Metal Provinces in the Central Himalaya Collision Belt: The Value of Regional Stratigraphic Correlations and Tectonic Analogies. Memoir of the Geological Society of China, 3: 167–194Google Scholar
  90. Mitchell, A. H. G., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean?. Journal of Asian Earth Sciences, 56: 1–23.  https://doi.org/10.1016/j.jseaes.2012.04.019 CrossRefGoogle Scholar
  91. Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189–215.  https://doi.org/10.1016/s0040-1951(02)00061-6 CrossRefGoogle Scholar
  92. Morley, C. K., 2004. Nested Strike-Slip Duplexes, and Other Evidence for Late Cretaceous-Palaeogene Transpressional Tectonics before and during India-Eurasia Collision, in Thailand, Myanmar and Malaysia. Journal of the Geological Society, 161(5): 799–812.  https://doi.org/10.1144/0016-764903-124 CrossRefGoogle Scholar
  93. Mubroto, B., Briden, J. C., McClelland, E., et al., 1994. Palaeomagnetism of the Balantak Ophiolite, Sulawesi. Earth and Planetary Science Letters, 125(1/2/3/4): 193–209.  https://doi.org/10.1016/0012-821x(94)90215-1 Google Scholar
  94. Nelson, R. W., Bartram, J. A., Christie, M. H., 1990. Valley Gold-Silver Deposit. In: Hughes, F. E., ed., Geology of Mineral Deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne. 1773–1776Google Scholar
  95. Ogura, Y., Murata, K., Iwai, M., 1987. Relation between Chemical Composition and Particle-Size Distribution of Ores in the Profile of Nickeliferous Laterite Deposits of the Rio Tuba Mine, Philippines. Chemical Geology, 60(1/2/3/4): 259–271.  https://doi.org/10.1016/0009-2541(87)90131-8 Google Scholar
  96. Oliver, G., Zaw, K., Hotson, M. D., 2011. Dating Rocks in Singapore: Plate Tectonics between 280 and 200 Million Years Ago. Innovation Magazine, 10(2): 22–25Google Scholar
  97. Otofuji, Y. I., Tung, V. D., Fujihara, M., et al., 2012. Tectonic Deformation of the Southeastern Tip of the Indochina Peninsula during Its Southward Displacement in the Cenozoic Time. Gondwana Research, 22(2): 615–627.  https://doi.org/10.1016/j.gr.2011.09.015 CrossRefGoogle Scholar
  98. Panjasawatwong, Y., Phajuy, B., Hada, S., 2003. Tectonic Setting of the Permo-Triassic Chiang Khong Volcanic Rocks, Northern Thailand Based on Petrochemical Characteristics. Gondwana Research, 6(4): 743–755.  https://doi.org/10.1016/s1342-937x(05)71021-2 CrossRefGoogle Scholar
  99. Panjasawatwong, Y., Zaw, K., Chantaramee, S., et al., 2006. Geochemistry and Tectonic Setting of the Central Loei Volcanic Rocks, Pak Chom Area, Loei, Northeastern Thailand. Journal of Asian Earth Sciences, 26(1): 77–90.  https://doi.org/10.1016/j.jseaes.2004.09.008 CrossRefGoogle Scholar
  100. Parkinson, C. D., 1991. The Petrology Structure and geoLogic History of the Metamorphic Rocks of Central SULAWESI, Indonesia: [Dissertation]. University of London, London. 587–588Google Scholar
  101. Pedersen, R. B., Searle, M. P., Carter, A., et al., 2010. U-Pb Zircon Age of the Andaman Ophiolite: Implications for the Beginning of Subduction beneath the Andaman-Sumatra Arc. Journal of the Geological Society, 167(6): 1105–1112.  https://doi.org/10.1144/0016-76492009-151 CrossRefGoogle Scholar
  102. Phajuy, B., Panjasawatwong, Y., Osataporn, P., 2005. Preliminary Geochemical Study of Volcanic Rocks in the Pang Mayao Area, Phrao, Chiang Mai, Northern Thailand: Tectonic Setting of Formation. Journal of Asian Earth Sciences, 24(6): 765–776.  https://doi.org/10.1016/j.jseaes.2004.06.001 CrossRefGoogle Scholar
  103. Pigram, C. J., Davies, H. L., 1987. Terrance and the Accretion History of the New Guinea Orogen. Journal of Australian Geology and Geophysics, 10(3): 193–211Google Scholar
  104. Pollard, P. J., Taylor, R. G., Peters, L., 2005. Ages of Intrusion, Alteration, and Mineralization at the Grasberg Cu-Au Deposit, Papua, Indonesia. Economic Geology, 100(5): 1005–1020.  https://doi.org/10.2113/gsecongeo.100.5.1005 CrossRefGoogle Scholar
  105. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365–377.  https://doi.org/10.1007/s12583-016-0669-5 CrossRefGoogle Scholar
  106. Rangin, C., Jolivet, L., Pubellier, M., 1990. A Simple Model for the Tectonic Evolution of Southeast Asia and Indonesia Region for the Past 43 M.y. Bulletin de la Societe Geologique de France, VI(6): 889–905.  https://doi.org/10.2113/gssgfbull.vi.6.889 Google Scholar
  107. Richards, J. P., Kerrich, R., 1993. The Porgera Gold Mine, Papua New Guinea: Magmatic Hydrothermal to Epithermal Evolution of an Alkalic-Type Precious Metal Deposit. Economic Geology, 88(5): 1017–1052.  https://doi.org/10.2113/gsecongeo.88.5.1017 CrossRefGoogle Scholar
  108. Ridd, M. F., 1980. Possible Palaeozoic Drift of SE Asia and Triassic Colli sion with China. Journal of the Geological Society, 137(5): 635–640.  https://doi.org/10.1144/gsjgs.137.5.0635 CrossRefGoogle Scholar
  109. Rigby, J. F., 1998. Upper Paleozoic Floras of SE Asia. In: Hall, R., Holloway, J. D., eds., Biogeography and Geological Evolution of SE Asia. Leiden, The Netherlands. 73–82Google Scholar
  110. Rock, N. M. S., Finlayson, E. J., 1990. Petrological Affinities of Intrusive Rocks Associated with the Giant Mesothermal Gold Deposit at Porgera, Papua New Guinea. Journal of Southeast Asian Earth Sciences, 4(3): 247–257.  https://doi.org/10.1016/s0743-9547(05)80018-2 CrossRefGoogle Scholar
  111. Rush, P. M., Seegers, H., 1990. Ok Tedi Copper-Gold Deposits. In: Hughes, F. E., ed., Geology of the Mineral Deposits of Australia and Papua New Guinea Volume 2. The Australasian Institute of Mining and Metallurgy, Melbourne. 1747–1754Google Scholar
  112. Salam, A., Zaw, K., Meffre, S., et al., 2014. Geochemistry and Geochronology of the Chatree Epithermal Gold-Silver Deposit: Implications for the Tectonic Setting of the Loei Fold Belt, Central Thailand. Gondwana Research, 26(1): 198–217.  https://doi.org/10.1016/j.gr.2013.10.008 CrossRefGoogle Scholar
  113. Schmidtke, E. A., Fuller, M. D., Haston, R. B., 1990. Paleomagnetic Data from Sarawak, Malaysian Borneo, and the Late Mesozoic and Cenozoic Tectonics of Sundaland. Tectonics, 9(1): 123–140.  https://doi.org/10.1029/tc009i001p00123 CrossRefGoogle Scholar
  114. Schwartz, M. O., Askury, A. K., 1989. Geologic, Geochemical, and Fluid Inclusion Studies of the Tin Granites from the Bujang Melaka Pluton, Kinta Valley, Malaysia. Economic Geology, 84(4): 751–779.  https://doi.org/10.2113/gsecongeo.84.4.751 CrossRefGoogle Scholar
  115. Schwartz, M. O., Rajah, S. S., Askury, A. K., et al., 1995. The Southeast Asian Tin Belt. Earth-Science Reviews, 38(2/3/4): 95–293.  https://doi.org/10.1016/0012-8252(95)00004-t Google Scholar
  116. Schwartz, M. O., Surjono, 1990. The Strata-Bound Tin Deposit Nam Salu, Kelapa Kampit, Indonesia. Economic Geology, 85(1): 76–98.  https://doi.org/10.2113/gsecongeo.85.1.76 CrossRefGoogle Scholar
  117. Searle, M. P., Whitehouse, M. J., Robb, L. J., et al., 2012. Tectonic Evolution of the Sibumasu-Indochina Terrane Collision Zone in Thailand and Malaysia: Constraints from New U-Pb Zircon Chronology of SE Asian Tin Granitoids. Journal of the Geological Society, 169(4): 489–500.  https://doi.org/10.1144/0016-76492011-107 CrossRefGoogle Scholar
  118. Senior, G. D., Guy, P. J., Bruckard, W. J., 2006. The Selective Flotation of Enargite from Other Copper Minerals—A Single Mineral Study in Relation to Beneficiation of the Tampakan Deposit in the Philippines. International Journal of Mineral Processing, 81(1): 15–26.  https://doi.org/10.1016/j.minpro.2006.06.001 CrossRefGoogle Scholar
  119. Sewell, D. M., Wheatley, C. J. V., 1994. The Lerokis and Kali Kuning Submarine Exhalative Gold-Silver-Barite Deposits, Wetar Island, Maluku, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 351–370.  https://doi.org/10.1016/0375-6742(94)90031-0 Google Scholar
  120. Shi, M. F., Lin, F. C., Liu, C. J., et al., 2013. Classification and Metallogenesis of Metallogenic Belts in Southeast Asia and the Neighbouring Southwestern Part of China. Sedimentary Geology and Tethyan Geology, 33(2): 103–112Google Scholar
  121. Sillitoe, R. H., 1997. Characteristics and Controls of the Largest Porphyry Copper-Gold and Epithermal Gold Deposits in the Circum-Pacific Region. Australian Journal of Earth Sciences, 44(3): 373–388.  https://doi.org/10.1080/08120099708728318 CrossRefGoogle Scholar
  122. Singharajwarapan, S., Berry, R., 2000. Tectonic Implications of the Nan Suture Zone and Its Relationship to the Sukhothai Fold Belt, Northern Thailand. Journal of Asian Earth Sciences, 18(6): 663–673.  https://doi.org/10.1016/s1367-9120(00)00017-1 CrossRefGoogle Scholar
  123. Soeria-Atmadja, R., Noeradi, D., Priadi, B., 1999. Cenozoic Magmatism in Kalimantan and Its Related Geodynamic Evolution. Journal of Asian Earth Sciences, 17(1/2): 25–45.  https://doi.org/10.1016/s0743-9547(98)00062-2 CrossRefGoogle Scholar
  124. Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166–179.  https://doi.org/10.1016/j.crte.2007.09.008 CrossRefGoogle Scholar
  125. Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington DC American Geophysical Union Geophysical Monograph, 27: 23–56Google Scholar
  126. Taylor, R. G., Polard, P. J., 1986. Recent Advance in Exploration Modelling for Tin Deposits and Their Application to the Southeast Asian Environment. Bulletin of the Geological Society of Malaysia, 19: 327–347Google Scholar
  127. Titley, S. R., 1975. Geological Characteristics and Environment of Some Porphyry Copper Occurrences in the Southwestern Pacific. Economic Geology, 70(3): 499–514.  https://doi.org/10.2113/gsecongeo.70.3.499 CrossRefGoogle Scholar
  128. Titley, S. R., Fleming, A. W., Neale, T. I., 1978. Tectonic Evolution of the Porphyry Copper System at Yandera, Papua New Guinea. Economic Geology, 73(5): 810–828.  https://doi.org/10.2113/gsecongeo.73.5.810 CrossRefGoogle Scholar
  129. Trung, N. M., Tsujimori, T., Itaya, T., 2006. Honvang Serpentinite Body of the Song Ma Fault Zone, Northern Vietnam: A Remnant of Oceanic Lithosphere within the Indochina-South China Suture. Gondwana Research, 9(1/2): 225–230.  https://doi.org/10.1016/j.gr.2005.06.012 CrossRefGoogle Scholar
  130. Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2): 175.  https://doi.org/10.1130/0016-7606(1961)72[175:doteis]2.0.co;2 CrossRefGoogle Scholar
  131. Turner, S. J., Flindell, P. A., Hendri, D., et al., 1994. Sediment-Hosted Gold Mineralisation in the Ratatotok District, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 317–336.  https://doi.org/10.1016/0375-6742(94)90029-9 Google Scholar
  132. Ueno, K., Wang, Y. J., Wang, X. D., 2003. Fusulinoidean Faunal Succession of a Paleo-Tethyan Oceanic Seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: An Overview. Island Arc, 12(2): 145–161.  https://doi.org/10.1046/j.1440-1738.2003.00387.x CrossRefGoogle Scholar
  133. Van Leeuwen, T. M., Allen, C. M., Kadarusman, A., et al., 2007. Petrologic, Isotopic, and Radiometric Age Constraints on the Origin and Tectonic History of the Malino Metamorphic Complex, NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 29(5/6): 751–777.  https://doi.org/10.1016/j.jseaes.2006.05.002 CrossRefGoogle Scholar
  134. Van Leeuwen, T. M. 2005. Stratigraphy and Tectonic Setting of the Cretaceous and Paleogene Volcanic-Sedimentary Successions in Northwest Sulawesi, Indonesia: Implications for the Cenozoic Evolution of Western and Northern Sulawesi. Journal of Asian Earth Sciences, 25(3): 481–511.  https://doi.org/10.1016/j.jseaes.2004.05.004 CrossRefGoogle Scholar
  135. Van Leeuwen, T. M., Taylor, R., Coote, A., et al., 1994. Porphyry Molybdenum Mineralization in a Continental Collision Setting at Malala, Northwest Sulawesi, Indonesia. Journal of Geochemical Exploration, 50(1/2/3): 279–315.  https://doi.org/10.1016/0375-6742(94)90028-0 Google Scholar
  136. Villeneuve, M., Gunawan, W., Cornee, J. J., et al., 2001. Geology of the Central Sulawesi Belt (Eastern Indonesia): Constraints for Geodynamic Models. International Journal of Earth Sciences, 91(3): 524–537.  https://doi.org/10.1007/s005310100228 CrossRefGoogle Scholar
  137. Vohra, C. P., Haldar, D., Roy, G. A. K., 1989. The Andaman-Nicobar Ophiolite Complex and Associated Mineral Resources-Current Appraisal. Phenerozoic Ophiolite of India, 1: 281–315Google Scholar
  138. Vroon, P. Z., 1992. Subduction of Continental Material in the Banda Are,Eastern Indonesia. Geologica Ultraiectina, Oost-Indonesia. 1–205Google Scholar
  139. Wakita, K., 2000. Cretaceous Accretionary-Collision Complexes in Central Indonesia. Journal of Asian Earth Sciences, 18(6): 739–749.  https://doi.org/10.1016/s1367-9120(00)00020-1 CrossRefGoogle Scholar
  140. Wang, X. F., Metcalfe, I., Jian, P., et al., 2000. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, Age and Evolution. Journal of Asian Earth Sciences, 18(6): 675–690.  https://doi.org/10.1016/s1367-9120(00)00039-0 CrossRefGoogle Scholar
  141. White, N. C., Leake, M. J., McCaughey, S. N., et al., 1995. Epithermal Gold Deposits of the Southwest Pacific. Journal of Geochemical Exploration, 54(2): 87–136.  https://doi.org/10.1016/0375-6742(95)00027-6 CrossRefGoogle Scholar
  142. Whitford, D. J., Nicholls, I. A., Taylor, S. R., 1979. Spatial Variations in the Geochemistry of Quaternary Lavas Across the Sunda Arc in Java and Bali. Contributions to Mineralogy and Petrology, 70(3): 341–356.  https://doi.org/10.1007/bf00375361 CrossRefGoogle Scholar
  143. Yang, J., Du, Y., Yu, X., et al., 2017. Early Permian Volcanic Fragment-Bearing Sandstones in Babu of Southeast Yunnan: Indicative of Paleo-Tethyan Ocean Subduction. Earth Science, 42(1):24–34 (in Chinese with English Abstract)Google Scholar
  144. Yeap, E. B., 1993. Tin and Gold Mineralizations in Peninsular Malaysia and Their Relationships to the Tectonic Development. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 329–348.  https://doi.org/10.1016/0743-9547(93)90035-n Google Scholar
  145. Yumul, G. P. Jr., 2001. The Acoje Block Platiniferous Dunite Horizon, Zambales Ophiolite Complex, Philippines: Melt Type and Associated Geochemical Controls. Resource Geology, 51(2): 165–174.  https://doi.org/10.1111/j.1751-3928.2001.tb00089.x CrossRefGoogle Scholar
  146. Yumul, G. P. Jr., Zhou, M. F., Wang, C. Y., et al., 2008. Geology and Geochemistry of the Shuanggou Ophiolite (Ailao Shan Ophiolitic Belt), Yunnan Province, SW China: Evidence for a Slow-Spreading Oceanic Basin Origin. Journal of Asian Earth Sciences, 32(5/6): 385–395.  https://doi.org/10.1016/j.jseaes.2007.11.007 CrossRefGoogle Scholar
  147. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30CrossRefGoogle Scholar
  148. Zhang, R. Y., Lo, C.-H., Chung, S. L., et al., 2013. Origin and Tectonic Implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks. Journal of Metamorphic Geology, 31(1): 49–62.  https://doi.org/10.1111/jmg.12012 CrossRefGoogle Scholar
  149. Zhang, W. B., Ye, J. H., 2017. Geological Characteristics, Ore-Forming Processes and Prospecting Potential of Cu-Au Deposits in the Circum-Pacific Metallogenic Domain. Geological Bulletin of China, 36(1): 1–15 (in Chinese with English Abstract)Google Scholar
  150. Zhu, Y. F., An, F., Feng, W. Y., et al., 2016. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 27(3): 491–506.  https://doi.org/10.1007/s12583-016-0673-7 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations