Advertisement

Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi Province: Implication for Petrogenesis and Mineralization

  • Lihua Qian
  • Jianqing LaiEmail author
  • Lifang Hu
  • Rong Cao
  • Shilong Tao
  • Bei You
Article
  • 18 Downloads

Abstract

The gold mineralization in the Longtoushan hydrothermal gold deposit is concentrated within the contact zone of the granitic complex. Whole rock geochemistry and in-situ U-Pb and Hf isotopic data were used to constrain the genesis and age of the granites and related Cu-Au mineralization in the Longtoushan Deposit. The granites mainly consist of the granite porphyry, rhyolite porphyry, porphyritic granite and quartz porphyry. LA-ICP-MS U-Pb dating of zircons from the granite porphyry, rhyolite porphyry and quartz porphyry indicates that they intruded from ca. 94 to 97 Ma. These intrusions exhibit similar trace element characteristics, i.e., right-dipping REE patterns, depletion of Ba, Sr, P and Ti, and enrichment of Th, U, Nd, Zr and Hf. The εHf(t) values of zircons from the granite porphyry, rhyolite porphyry and quartz porphyry range from -26.81 to -8.19, -8.12 to -5.33, and -8.99 to -5.83, respectively, suggesting that they were mainly derived from the partial melting of the Proterozoic crust. The Cu-Au mineralization is mainly related to the rhyolite porphyry and porphyritic granite, respectively. The Longtoushan granites were most likely formed in a post-collisional extensional environment, and the deposit is a part of the Late Yanshanian magmatism related mineralization in the Dayaoshan area and its adjacent areas.

Key Words

Longtoushan gold deposit rhyolite porphyry zircon U-Pb dating Hf isotopes petrogenesis Cu-Au mineralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the Project of Innovationdriven Plan in Central South University (No. 2015CX008) and the Fundamental Reserch Funds for the Central Universities of Central South University (No. 2015zzts071). Conggao Liang and Rui Huang are thanked for their invaluable help and support during fieldwork. The U-Pb dating and in situ Hf ratio analyses of the zircons were carried out at Nanjing FocuMS Contract Testing Co. Ltd., with support from Liang Li and Jianfeng Gao. We appreciate two anonymous reviewers, who helped to improve the paper greatly. Moreover, we thank Miao Yu, Quan Ou and Wenzhou Xiao for their constructive reviews and useful suggestions. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-1204-7.

Supplementary material

12583_2018_1204_MOESM1_ESM.xlsx (36 kb)
Supplementary material, approximately 37 KB.

References

  1. Alderton, D. H. M., Pearce, J. A., Potts, P. J., 1980. Rare Earth Element Mobility during Granite Alteration: Evidence from Southwest England. Earth and Planetary Science Letters, 49(1): 149–165. https://doi.org/10.1016/0012-821x(80)90157-0Google Scholar
  2. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-xGoogle Scholar
  3. Bi, S. J., Yang, Z., Li, W., et al., 2015. Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt: Constraints from Zircon U-Pb Age and Hf Isotope. Earth Science, 40(9): 1458–1479 (in Chinese with English Abstract)Google Scholar
  4. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-xGoogle Scholar
  5. Boztuğ, D., Harlavan, Y., Arehart, G., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divriği-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97(1/2): 193–218. https://doi.org/10.1016/j.lithos.2006.12.014Google Scholar
  6. Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region (BGMRGZAR), 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Geological Publishing House, Beijing (in Chinese)Google Scholar
  7. Chen, C., Lü, X. B., Wu, C. M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1): 114–129. https://doi.org/10.1007/s12583-017-0808-7Google Scholar
  8. Chen, F. W., Li, H. Q., Mei, Y. P., 2008. Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield, Gui County, Guangxi. Acta Geologica Sinica, 82(7): 921–926 (in Chinese with English Abstract)Google Scholar
  9. Chen, M. H., Li, Z. Y., Li, Q., et al., 2015. A Preliminary Study of Multi-Stage Granitoids and Related Metallogenic Series in Dayaoshan Area of Guangxi, China. Earth Science Frontiers, 22(2): 41–53 (in Chinese with English Abstract)Google Scholar
  10. Dong, B. L., 1990. Sibao Group in Guangxi and Its Metallogeny. Geology of Guangxi, 3(1): 53–58 (in Chinese with English Abstract)Google Scholar
  11. Duan, R. C., Ling, W. L., Li, Q., et al., 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with Metallogenesis in South China: Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Area, Guangxi Province. Acta Geologica Sinica, 85(10): 1644–1658 (in Chinese with English Abstract)Google Scholar
  12. Elburg, M. A., 1996. U-Pb Ages and Morphologies of Zircon in Microgranitoid Enclaves and Peraluminous Host Granite: Evidence for Magma Mingling. Contributions to Mineralogy and Petrology, 123(2): 177–189. https://doi.org/10.1007/s004100050149Google Scholar
  13. Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2): 79–100. https://doi.org/10.1016/j.precamres.2006.08.002Google Scholar
  14. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9Google Scholar
  15. Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-xGoogle Scholar
  16. Hu, S. Q., Zhou, G. F., Peng, S. B., et al., 2012. Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance. Acta Geologica Sinica, 33(1): 23–37 (in Chinese with English Abstract)Google Scholar
  17. Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. https://doi.org/10.1039/c0ja00145gGoogle Scholar
  18. Huang, H. M., He, Z. J., Cui, B., 2003. Metallogenic Series of Granite in Dayaoshan of Guangxi. Geology and Prospecting, 39(4): 12–16 (in Chinese with English Abstract)Google Scholar
  19. Huang, M. Z., Chen, W. S., Li, W. Z., et al., 1999. Longtoushan Gold Deposit of Subvolcanic-Cryptoexplosion Breccia Type, Guangxi. Acta Geoscientia Sinica, 20(1): 39–46 (in Chinese with English Abstract)Google Scholar
  20. Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017Google Scholar
  21. Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy & Geochemistry, 53: 327–341. https://doi.org/10.2113/0530327Google Scholar
  22. Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-Situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1): 83–94. https://doi.org/10.1007/s004100000220Google Scholar
  23. Li, Q., Duan, R. C., Ling, W. L., et al., 2009. Detrital Zircon U-Pb Geochronology of the Early Paleozoic Strata in Eastern Guangxi and Its Constraint on the Caledonian Tectonic Nature of the Cathaysian Continental Block. Earth Science, 34(1): 189–202 (in Chinese with English Abstract)Google Scholar
  24. Li, S. R., Wang, D. H., Liang, T., et al., 2008. Metallogenic Epochs of the Damingshan Tungsten Deposit in Guangxi and Its Prospecting Potential. Acta Geologica Sinica, 82: 873–879 (in Chinese with English Abstract)Google Scholar
  25. Li, T., 1976. Chemical Element Abundances in the Earth and Its Major Shells. Journal of Geochimica, 3: 167–174 (in Chinese)Google Scholar
  26. Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202–1215. https://doi.org/10.1016/j.gr.2014.01.003Google Scholar
  27. Lin, Z. Y., Wang, D. H., Li, S. R., 2008. Re-Os Isotopic Age of Molybdenite from the Wangshe Copper-Tungsten Deposit in Guangxi Province and Their Implications. Acta Geologica Sinica, 82: 1565–1571 (in Chinese with English Abstract)Google Scholar
  28. Liu, T. F., 1993. The Characteristics of Granitoid in East Guangxi and Its Relation with Gold Deposit. Guangxi Geology, 6(4): 77–86 (in Chinese with English Abstract)Google Scholar
  29. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICPMS. Chinese Science Bulletin, 55(15): 1535–1546 (in Chinese)Google Scholar
  30. Liu, Z. Q., Tang, D. C., 2007. Geological Features and Genesis of the Gold Deposits in Longshan Ore Field, Guigang, Guangxi. Gansu Metallurgy, 29(5): 30–33 (in Chinese)Google Scholar
  31. Ludwig, K. R., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley Google Scholar
  32. MacLean, W. H., 1990. Mass Change Calculations in Altered Rock Series. Mineralium Deposita, 25(1): 44–49. https://doi.org/10.1007/bf03326382Google Scholar
  33. Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636–658 (in Chinese with English Abstract)Google Scholar
  34. McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4Google Scholar
  35. Pan, X. F., Hou, Z. Q., Zhao, M., et al., 2018. Geochronology and Geochemistry of the Granites from the Zhuxi W-Cu Ore Deposit in South China: Implication for Petrogenesis, Geodynamical Setting and Mineralization. Lithos, 304–307: 155–179. https://doi.org/10.1016/j.lithos.2018.01.014Google Scholar
  36. Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125Google Scholar
  37. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/ 25.4.956Google Scholar
  38. Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, AmsterdamGoogle Scholar
  39. Schmidberger, S. S., Hegner, E., 1999. Geochemistry and Isotope Systematics of Calc-Alkaline Volcanic Rocks from the Saar-Nahe Basin (SW Germany)––Implications for Late-Variscan Orogenic Development. Contributions to Mineralogy and Petrology, 135(4): 373–385. https://doi.org/10.1007/s004100050518Google Scholar
  40. Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3/4): 263–276. https://doi.org/10.1016/j.precamres.2011.03.003Google Scholar
  41. Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the “Missing Nb Paradox”. Geology, 41(3): 303–306. https://doi.org/10.1130/g33781.1Google Scholar
  42. Tao, S. L., Lai, J. Q., Zhang, J. D., et al., 2017. Geochemical Characteristics of Auriferous Pyrite in Longtoushan Gold Deposit, Guangxi Province, China. The Chinese Journal of Nonferrous Metals, 27(6): 1263–1279 (in Chinese with English Abstract)Google Scholar
  43. Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, OxfordGoogle Scholar
  44. Wang, C. H., 2011. Metallogenic Model and Prognosis of the Longtoushan Gold Field, the Guangxi Zhuang Autonomous Region, China: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract)Google Scholar
  45. Wang, C. H., Wang, D. H., Li, H. Q., et al., 2012. Molybdenite Re-Os Datings for the Pingtianshan Mo Spot in the Southwest Region of the Dayaoshan Uplift Area in Guangxi and Its Geological Implication. Mineral Deposits, 31(Suppl.1): 605–606 (in Chinese with English Abstract)Google Scholar
  46. Wang, Q., Zhao, Z. H., Jian, P., et al., 2005. Geochronology of Cretaceous AType Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21: 795–808 (in Chinese with English Abstract)Google Scholar
  47. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.xGoogle Scholar
  48. Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)Google Scholar
  49. Xie, L. S., Sun, B. D., 1993. Geological Characteristics of Longtoushan Volcanic-Subvolcanic Gold Deposit, Guigang City, Guangxi. Guangxi Geology, 6(4): 27–42 (in Chinese with English Abstract)Google Scholar
  50. Xiong, F. H., Ma, C. Q., Jiang, H., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474–490. https://doi.org/10.1007/s12583-016-0674-6Google Scholar
  51. Xu, X. S., O’Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1/2): 51–78. https://doi.org/10.1016/j.precamres.2007.04.010Google Scholar
  52. Yu, J. H., O’Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1–4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016Google Scholar
  53. Zhang, C. P., Zeng, N. S., 2014. Geochemical Characteristics of Ore-Bearing Rocks in Longtoushan Gold Geposit, Guangxi Province. Gold Science Technology, 22(2): 17–23. (in Chinese with English Abstract)Google Scholar
  54. Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433–446. https://doi.org/10.1007/s12583-016-0934-1Google Scholar
  55. Zhao, Z. H., 1987. Calculation of δEu Values. Geology-Geochemistry, 6: 70 (in Chinese)Google Scholar
  56. Zou, H. P., Du, X. D., Lao, M. J., et al., 2014. Detrital Zircon U-Pb Geochronology of Cambrian Sandstones in Damingshan, Central Guangxi and Its Tectonic Implications. Acta Geologica Sinica, 88: 1800–1819 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physicsCentral South UniversityChangshaChina

Personalised recommendations