Journal of Earth Science

, Volume 30, Issue 2, pp 236–243 | Cite as

Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years

  • Haijun SongEmail author
  • Paul B. Wignall
  • Huyue Song
  • Xu Dai
  • Daoliang Chu
Paleontology and Paleoecology


Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature (SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian-Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene-Eocene transition. The SSTs during these warming periods are about 5–30 °C higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.

Key Words

sea surface temperature global warming ocean anoxic event dissolved oxygen Phanerozoic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Zhipu Qiu for collecting data, Ján Veizer for comments on earlier drafts, and Dana L. Royer for providing atmospheric oxygen and carbon dioxide data. This study is supported by the National Natural Science Foundation of China (Nos. 41821001, 41622207, 41530104, 41661134047), the State Key R&D Project of China (No. 2016YFA0601100), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000), a Marie Curie Fellowship (No. H2020-MSCA-IF-2015-701652), and the Natural Environment Research Council’s Eco-PT Project (No. NE/P01377224/1), which is a part of the Biosphere Evolution, Transitions and Resilience Program (BETR). The final publication is available at Springer via

Supplementary material

12583_2018_1002_MOESM1_ESM.xlsx (1.9 mb)
Supplementary material, approximately 228 KB.

References Cited

  1. Belcher, C. M., McElwain, J. C., 2008. Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic. Science, 321(5893): 1197–1200. CrossRefGoogle Scholar
  2. Benson, B. B., Krause, D.Jr., 1984. The Concentration and Isotopic Fractionation of Oxygen Dissolved in Freshwater and Seawater in Equilibrium with the Atmosphere1. Limnology and Oceanography, 29(3): 620–632. CrossRefGoogle Scholar
  3. Bergman, N. M., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397–437. CrossRefGoogle Scholar
  4. Berner, R. A., 2001. GEOCARB III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182–204. CrossRefGoogle Scholar
  5. Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653–5664. CrossRefGoogle Scholar
  6. Brown, P. T., Caldeira, K., 2017. Greater Future Global Warming Inferred from Earth’s Recent Energy Budget. Nature, 552(7683): 45–50. CrossRefGoogle Scholar
  7. Came, R. E., Eiler, J. M., Veizer, J., et al., 2007. Coupling of Surface Temperatures and Atmospheric CO2 Concentrations during the Palaeozoic Era. Nature, 449(7159): 198–201. CrossRefGoogle Scholar
  8. Crowley, J. K., Berner, R. A., 2001. CO2 and Climate Change. Science, 292: 870–872. CrossRefGoogle Scholar
  9. Dera, G., Brigaud, B., Monna, F., et al., 2011. Climatic Ups and Downs in a Disturbed Jurassic World. Geology, 39(3): 215–218. CrossRefGoogle Scholar
  10. Dickson, A. J., Cohen, A. S., Coe, A. L., 2012. Seawater Oxygenation during the Paleocene-Eocene Thermal Maximum. Geology, 40(7): 639–642. CrossRefGoogle Scholar
  11. Falkowski, P. G., Katz, M. E., Milligan, A. J., et al., 2005. The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals. Science, 309(5744): 2202–2204. CrossRefGoogle Scholar
  12. Fielding, C. R., Frank, T. D., Isbell, J. L., 2008. The Late Paleozoic Ice Age—A Review of Current Understanding and Synthesis of Global Climate Patterns. In: Fielding, C. R., Frank, T. D., Isbell, J. L., eds., Resolving the Late Paleozoic Ice Age in Time and Space, 441: 343–354.Google Scholar
  13. Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019): 903–906. CrossRefGoogle Scholar
  14. Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. CrossRefGoogle Scholar
  15. Glasspool, I. J., Scott, A. C., 2010. Phanerozoic Concentrations of Atmospheric Oxygen Reconstructed from Sedimentary Charcoal. Nature Geoscience, 3(9): 627–630. CrossRefGoogle Scholar
  16. Grossman, E. L., Mii, H. S., Zhang, C. L., et al., 1996. Chemical Variation in Pennsylvanian Brachiopod Shells-Diagenetic, Taxonomic, Microstructural, and Seasonal Effects. SEPM Journal of Sedimentary Research, 66(5): 1011–1022. Google Scholar
  17. Grossman, E. L., 2012. Oxygen Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale 2012. Elsevier. 195–220Google Scholar
  18. Hay, W. W., Migdisov, A., Balukhovsky, A. N., et al., 2006. Evaporites and the Salinity of the Ocean during the Phanerozoic: Implications for Climate, Ocean Circulation and Life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1/2): 3–46. CrossRefGoogle Scholar
  19. Hays, P. D., Grossman, E. L., 1991. Oxygen Isotopes in Meteoric Calcite Cements as Indicators of Continental Paleoclimate. Geology, 19(5): 441.<0441:oiimcc<;2CrossRefGoogle Scholar
  20. Henkes, G. A., Passey, B. H., Grossman, E. L., et al., 2018. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth and Planetary Science Letters, 490: 40–50. CrossRefGoogle Scholar
  21. Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., et al., 2017. Global Warming and Recurrent Mass Bleaching of Corals. Nature, 543(7645): 373–377. CrossRefGoogle Scholar
  22. Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): Q03004. CrossRefGoogle Scholar
  23. Joachimski, M. M., van Geldern, R., Breisig, S., et al., 2004. Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542–553. CrossRefGoogle Scholar
  24. Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195–198. CrossRefGoogle Scholar
  25. Kennett, J. P., Stott, L. D., 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341): 225–229. CrossRefGoogle Scholar
  26. Krause, A. J., Mills, B. J. W., Zhang, S., et al., 2018. Stepwise Oxygenation of the Paleozoic Atmosphere. Nature Communications, 9(1): 4081. CrossRefGoogle Scholar
  27. Lécuyer, C., Amiot, R., Touzeau, A., et al., 2013. Calibration of the Phosphate δ18O Thermometer with Carbonate-Water Oxygen Isotope Fractionation Equations. Chemical Geology, 347: 217–226. CrossRefGoogle Scholar
  28. McElwain, J. C., Wade-Murphy, J., Hesselbo, S. P., 2005. Changes in Carbon Dioxide during an Oceanic Anoxic Event Linked to Intrusion into Gondwana Coals. Nature, 435(7041): 479–482. CrossRefGoogle Scholar
  29. Meinshausen, M., Meinshausen, N., Hare, W., et al., 2009. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 °C. Nature, 458(7242): 1158–1162. CrossRefGoogle Scholar
  30. Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251–288. CrossRefGoogle Scholar
  31. O’Brien, C. L., Robinson, S. A., Pancost, R. D., et al., 2017. Cretaceous Sea-Surface Temperature Evolution: Constraints from TEX 86 and Planktonic Foraminiferal Oxygen Isotopes. Earth-Science Reviews, 172: 224–247. CrossRefGoogle Scholar
  32. Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Science, 362(6419): eaat1327. CrossRefGoogle Scholar
  33. Rey, K., Amiot, R., Fourel, F., et al., 2016. Global Climate Perturbations during the Permo-Triassic Mass Extinctions Recorded by Continental Tetrapods from South Africa. Gondwana Research, 37: 384–396. CrossRefGoogle Scholar
  34. Royer, D. L., Berner, R. A., Montañez, I. P., et al., 2004. CO2 as a Primary Driver of Phanerozoic Climate. GSA Today, 14(3): 3–7.<4:caapdo>;2 CrossRefGoogle Scholar
  35. Royer, D. L., Donnadieu, Y., Park, J., et al., 2014. Error Analysis of CO2 and O2 Estimates from the Long-Term Geochemical Model GEOCARB-SULF. American Journal of Science, 314(9): 1259–1283. CrossRefGoogle Scholar
  36. Sarmiento, J. L., Herbert, T. D., Toggweiler, J. R., 1988. Causes of Anoxia in the World Ocean. Global Biogeochemical Cycles, 2(2): 115–128. CrossRefGoogle Scholar
  37. Shaviv, N. J., Veizer, J., 2003. Celestial Driver of Phanerozoic Climate?. GSA Today, 13(7): 4–10.<0004:cdopc>;2 CrossRefGoogle Scholar
  38. Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., et al., 2010. A CO2 Decrease-Driven Cooling and Increased Latitudinal Temperature Gradient during the Mid-Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 293(1/2): 97–103. CrossRefGoogle Scholar
  39. Sluijs, A., Schouten, S., Pagani, M., et al., 2006. Subtropical Arctic Ocean Temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 441(7093): 610–613. CrossRefGoogle Scholar
  40. Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(1): 4132. CrossRefGoogle Scholar
  41. Song, H. J., Jiang, G. Q., Poulton, S. W., et al., 2017. The Onset of Widespread Marine Red Beds and the Evolution of Ferruginous Oceans. Nature Communications, 8(1): 399. CrossRefGoogle Scholar
  42. Stramma, L., Johnson, G. C., Sprintall, J., et al., 2008. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320(5876): 655–658. CrossRefGoogle Scholar
  43. Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370. CrossRefGoogle Scholar
  44. Tripati, A., Elderfield, H., 2005. Deep-Sea Temperature and Circulation Changes at the Paleocene-Eocene Thermal Maximum. Science, 308(5730): 1894–1898. CrossRefGoogle Scholar
  45. Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550–554. CrossRefGoogle Scholar
  46. Veizer, J., Godderis, Y., François, L. M., 2000. Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon. Nature, 408(6813): 698–701. CrossRefGoogle Scholar
  47. Veizer, J., Prokoph, A., 2015. Temperatures and Oxygen Isotopic Composition of Phanerozoic Oceans. Earth-Science Reviews, 146: 92–104. CrossRefGoogle Scholar
  48. Zachos, J. C., Wara, M. W., Bohaty, S., et al., 2003. A Transient Rise in Tropical Sea Surface Temperature during the Paleocene-Eocene Thermal Maximum. Science, 302(5650): 1551–1554. CrossRefGoogle Scholar
  49. Zachos, J. C., Schouten, S., Bohaty, S., et al. 2006. Extreme Warming of Mid-Latitude Coastal Ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and Isotope Data. Geology, 34(9): 737–740. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations