Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 296–308 | Cite as

Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet

  • Shunbao Gao
  • Youye ZhengEmail author
  • Junsheng Jiang
  • Kan Tian
  • Jin Xu
Petrogeochemistry and Mineral Deposits
  • 6 Downloads

Abstract

The Gebunongba iron polymetallic deposit is a typical skarn deposit located at the westernmost end of the discovered iron polymetallic deposits in the Gangdese metallogenic belt. Major and trace elements of the monzonite granite related to mineralization show that these rocks are peraluminous (ACNK=1.15–1.21) and are rich in Si (76.63 wt.%–76.93 wt.% SiO2), K (K2O/Na2O ratio of 1.80–2.30), LREE and LILEs (Rb, Ba, Th, U, Pb), but is depleted in high field strength elements (Nb, Ta, Ti and HREE). In addition, these rocks show obviously negative Eu anomalies (δEu=0.48–0.55). The LA-ICP-MS U-Pb age of zircons in monzonite granite is 59.72±0.55 Ma (MSWD=0.79), whereas the 40Ar/39Ar age of muscovite in iron ores is 59.22±0.61 Ma (MSWD=16.20). This indicates that the deposit formed at the syn-collision stage of Lhasa-India terrane is later than the northward subduction of the Yajiang crust. The monzonite granite has been probably derived from the partial melting of ancient lower crustal materials, which is probably resulted from the underplating of mantle-derived magmas. It is favorable for the formation of iron polymetallic deposit. Iron polymetallic mineralization is prevalent in Gangdese metallogenic belt at syn-collision stage. Therefore, syn-collision stage is an important mineralization stage for iron polymetallic deposits. The results of this study proved that iron polymetallic mineralization still took place in the western segment of Gangdese metallogenic belt and provided basis for further prospecting the deposits of the same type.

Key Words

western segment of the Gangdese belt iron polymetallic deposit geochronology metallogenic environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was jointly funded by the National Key Research and Development Program (No. 2016YFC0600300), the Fundamental Scientific Research Fund for Central Universities, Changjiang Scholars Program and Innovation Team Development Plan (No. IRT1083). We thank anonymous reviewers for their constructive comments. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0984-0.

References Cited

  1. Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26.  https://doi.org/10.1017/s0263593300007720 Google Scholar
  2. Crofu, F., Hanchar, J. M., Hoskin, P. W., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53: 469–495.  https://doi.org/10.2113/0530469.Google Scholar
  3. Duan, Z. M., Li, G. M., Li, Y. X., et al., 2014. Geochronology and Geochemical Characteristics of Ore-Bearing Porphyries in the Longgen Lead-Zinc Deposit in the Middle Gangdese Metallogenic Belt, Central China. Mineral Deposits, 33(3): 625–638 (in Chinese with English Abstract)Google Scholar
  4. Fei, F., Yang, Z. S., Liu, Y. C., et al., 2015. Petrogenetic Epoch of the Rock Mass in Lunggar Iron Deposit of Coqen County, Tibet. Acta Petrologica et Mineralogica, 34(4): 568–580 (in Chinese with English Abstract)Google Scholar
  5. Fu, Q., Huang, K. X., Zheng, Y. C., et al., 2015. Ar-Ar Chronology of the Muscovite from Mengya’a Lead-Zinc Deposits, Tibet, and Its Geodynamic Implications. Acta Geologica Sinica, 89(3): 569–582 (in Chinese with English Abstract)Google Scholar
  6. Fu, Q., Yang, Z. S., Zheng, Y. C., et al., 2013. U-Pb Ages, Hf Isotope and Geochemistry of the Zircon in Granodiorite in Jialapu Iron Deposit, Tibet. Mineral Deposits, 32(3): 564–578 (in Chinese with English Abstract)Google Scholar
  7. Gao, S. B., Zheng, Y. Y., Tian, L. M., et al., 2012. Diagenetic and Metallogenic Epoch and of Chagele Copper-Lead-Zinc Deposit, Tibet and Its Significance. Earth Science, 37(3): 507–514 (in Chinese with English Abstract)Google Scholar
  8. Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065–1073.  https://doi.org/10.2113/gscanmin.38.5.1065 Google Scholar
  9. Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101.  https://doi.org/10.1039/b804760j Google Scholar
  10. Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A “Wire” Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50–57.  https://doi.org/10.1016/j.sab.2012.09.007 Google Scholar
  11. Ji, X. H., Meng, X. J., Yang, Z. S., et al., 2014. The Ar-Ar Geochronology of Sericite from Narusongduo Crypto Explosive Brecciate Lean-Zircon Deposit, Tibet and Its Geological Significance. Geology and Exploration, 50(2): 281–290 (in Chinese with English Abstract)Google Scholar
  12. Jiang, Y. D., Qiu, H. N., Xiao, H. J., 2006. Analyses of 40Ar-39Ar Dating of Sphalerite Fluid Inclusions: A Case Study of Fankou Lead-Zinc Deposit in Guangdong. Acta Petrologica Sinica, 22(10): 2425–2430 (in Chinese with English Abstract)Google Scholar
  13. Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619.  https://doi.org/10.1016/s0098-3004(01)00095-4 Google Scholar
  14. Li, G. M., Yang, J. R., Ding, J., 2003. New Advances in Mineral Exploration in Brahmaputra Metallogenic Province, Tibet. Geological Bulletin of China, 22(9): 699–703 (in Chinese with English Abstract)Google Scholar
  15. Li, G. M., Liu, B., Dong, S. L., et al., 2010. Superimposed Mineralization and Its Significance in the Copper-Iron-Zinc-Zinc Concentrator in the Middle Section of the Gangdese Metallogenic Belt. Mineral Deposits, 29(Suppl.): 217–218 (in Chinese with English Abstract)Google Scholar
  16. Li, G. M., Rui, Z. Y., 2004. Diagenetic and Mineralization Ages of the Porphyry Copper Deposits in the Gangdese Metallogenic Belt, Southern Xizang. Geotectonica et Metallogenia, 28(2): 165–170 (in Chinese with English Abstract)Google Scholar
  17. Li, Y. X., Li, G. M., Xie, Y. L., et al., 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8): 2683–2700.  https://doi.org/10.3799/dqkx.2018.170 (in Chinese with English Abstract)Google Scholar
  18. Li, Y. X., Xie, Y. L., Chen, W., et al., 2011. U-Pb Age and Geochemical Characteristics of the Zircon in Monzogranite Porphyry of Qiagong Deposit, Tibet, and Their Geological Implication. Acta Petrologica Sinica, 27(7): 2023–2033 (in Chinese with English Abstract)Google Scholar
  19. Lin, W., Liang, H. Y., Zhang, Y. Q., et al., 2004. Prochemochemistry and Zircon SHRIMP Age Characteristics of the Chongjiang Porphyry Porphyry in the Gangdese Copper Deposit. Geochemistry, 33(6): 585–592 (in Chinese with English Abstract)Google Scholar
  20. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546.  https://doi.org/10.1007/s11434-010-3052-4 Google Scholar
  21. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008a. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43.  https://doi.org/10.1016/j.chemgeo.2008.08.004 Google Scholar
  22. Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133–153.  https://doi.org/10.1016/j.chemgeo.2007.10.016 Google Scholar
  23. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 Google Scholar
  24. Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265–282.  https://doi.org/10.1007/s12583-016-0925-8 Google Scholar
  25. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 Google Scholar
  26. Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142–1163.  https://doi.org/10.3799/dqkx.2018.713 (in Chinese with English Abstract)Google Scholar
  27. Mo, X. X., Pan, G. T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau: Constrained by Tectonic-Magmatic Events. Earth Science Frontiers, 13(6): 43–51 (in Chinese with English Abstract)Google Scholar
  28. Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521–533 (in Chinese with English Abstract)Google Scholar
  29. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983.  https://doi.org/10.1093/petrology/25.4.956 Google Scholar
  30. Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285.  https://doi.org/10.1146/annurev.ea.23.050195.001343 Google Scholar
  31. Pearce, J. A., 1996. Sources and Setting of Granitic Rocks. Episodes, 19(4): 120–125Google Scholar
  32. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.  https://doi.org/10.1007/bf00384745 Google Scholar
  33. Qiu, H. N., 2006. Construction and Development Trend of a New Generation Ar-Ar Laboratory: A Case Study of Ar-Ar Laboratory, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Geochemistry, 35(2): 133–140 (in Chinese with English Abstract)Google Scholar
  34. Rudnick, R. L., Cao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crusttreaties on Geochemistry. Elsevier Pergamon, Oxford.  https://doi.org/10.1016/B0-08-043751-6/03016-4 Google Scholar
  35. Rui, Z. Y., Hou, Z. Q., Qu, X. M., et al., 2003. Metallogenic Epoch of Gangdese Porphyry Copper Deposit and the Uplift of the Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217–225 (in Chinese with English Abstract)Google Scholar
  36. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 Google Scholar
  37. Tang, J. X., Li, F. T., Li, Z. J., et al., 2010. Time Limit for the Formation of the Main Geological Bodies of the Copper-Gold Deposit in Xiong Village, Xiantongmen County, Tibet: Evidence of U-Pb Age of Zircon and Re-Os Age of Molybdenite Deposit. Mineral Deposites, 29(3): 461–475 (in Chinese with English Abstract)Google Scholar
  38. Tang, J. X., Li, Z. M., Zhang, L., et al., 2007. Geological Characteristics of Xiongcun Porphyry-Epithermal Copper-Gold Deposit. Mineral Deposits, 27(Suppl.): 127–128 (in Chinese with English Abstract)Google Scholar
  39. Tang, J. X., Zhang, Z., Li, Z. J., et al., 2013. Metallogenic Regularity, Deposit Model and Ore Prospecting Direction of Gaerlian-Galale Copper-Gold Deposit in Tibet. Acta Geographica Sinica, 34(4): 385–394 (in Chinese with English Abstract)Google Scholar
  40. Wang, B. D., Guo, L., Wang, L. Q., et al., 2012. Chronology and Genesis of the Ore-Bearing Rock Mass in Chagele Deposit, Middle Gangdese Metallogenic Belt. Acta Petrologica Sinica, 28(5): 1647–1662 (in Chinese with English Abstract)Google Scholar
  41. Wang, L. L., Mo, X. X., Li, B., et al., 2006. Chronology and Geochemistry of Ore-Bearing Porphyries of Qilonglong Porphyry Copper Deposit in Tibet. Acta Petrologica Sinica, 22(4): 1001–1008 (in Chinese with English Abstract)Google Scholar
  42. Wang, L. Q., Lin, X., Li, Z., et al., 2014. Geochronology, Geochemistry and Hf Isotopic Compositions of the Granite Porphyry in Mengya’a Lead-Zircon Deposit, Tibet. Acta Geologica Sinica, 88(12): 2572–2583 (in Chinese with English Abstract)Google Scholar
  43. Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569.  https://doi.org/10.1007/bf03184122 Google Scholar
  44. Yang, Y., Duo, J., Dexi, Y. Z., et al., 2015. U-Pb Dating of Zircon and Hf Isotopic Compositions of the Intrusive Rocks from Liedtinggang Iron Polymetallic Deposit, Tibet, and Their Geological Significance. Acta Petrologica et Mineralogica, 34(3): 281–294 (in Chinese with English Abstract)Google Scholar
  45. Yang, Y., Duo, J., Liu, H. F., et al., 2014. Re-Os Dating of Molybdenite in Lietinggang Iron Polymetallic Deposit and Its Geological Significance. Chinese Geology, 41(5): 1554–1564 (in Chinese with English Abstract)Google Scholar
  46. Yu, Y. S., Yang, Z. S., Duo, J., et al., 2011a. Age and Genesis of Duobule Iron-Copper Metallogenic Rock Mass in Tibet: Evidence of Zircon U-Pb Age, Hf Isotope and REE. Mineral Deposits, 30(3): 420–434 (in Chinese with English Abstract)Google Scholar
  47. Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2011b. LA-ICP-MS U-Pb Age and Geochemical Characteristics of Zircon in the Intrusive Rocks of Gunjiuiron Ore in Cuoqinnixiong Deposit, Tibet. Acta Petrologica Sinica, 27(7): 1949–1960 (in Chinese with English Abstract)Google Scholar
  48. Zhang, J. S., Duo, J., Xia, D. X., et al., 2013. Metallogenicsystem of Qulong Porphyry Copper-Molybdenum Deposit-Skarn Copper Deposit in the Gangdese, Tibet: Evidence of Re-Os Isotope Chronology. Journal of Jilin University (Earth Science Edition), 43(5): 1366–1376 (in Chinese with English Abstract)Google Scholar
  49. Zhang, Z. L., Zhang, J. D., Li, G. D., et al., 2006. Major Progress in Iron Ore Finding in the Western Segment of the Gangdise Belt, Southern Tibet, China. Geological Bulletin of China, 25(5): 544–548 (in Chinese with English Abstract)Google Scholar
  50. Zhang, G. Y., Zheng, Y. Y., Gong, F. Z., et al., 2008. Jiru Porphyry Copper Deposit in Tibet: Constraint of Porphyry Metallogenic Age Associated with Continental-Continental Collision Process. Acta Petrologica Sinica, 24(3): 473–479 (in Chinese with English Abstract)Google Scholar
  51. Zhao, Y. M., Feng, C. Y., Li, D. X., 2017. New Progress in Prospecting for Skarn Deposits and Spatial-Teporal Distribution of Skarn Deposits in China. Mineral Deposits, 36(1): 519–543 (in Chinese with English Abstract)Google Scholar
  52. Zhao, Y. M., Lin, W. W., Bi, C. S., et al., 2012. Skarn Deposits of China. Geological Publishing House, Beijing. 39–59 (in Chinese with English Abstract)Google Scholar
  53. Zhao, Y. X., 2015. Metallogenic Regularity and Metallogenic Model of Skarn Type Deposits. China University of Geosciences Press, Wuhan (in Chinese)Google Scholar
  54. Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet. Ore Geology Reviews, 70: 510–532 (in Chinese with English Abstract)Google Scholar
  55. Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842–857.  https://doi.org/10.1016/j.jseaes.2013.03.029 Google Scholar
  56. Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006a. Ore-Forming Fluid Controlling Mineralization in Qulong Super-Large Porphyry Copper Deposit, Tibet. Earth Science, 31(3): 349–354 (in Chinese with English Abstract)Google Scholar
  57. Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006b. Significance and Revelation of the Discovery of Zhoruo Porphyry Copper Deposit in Tibet. Earth Science Frontiers, 13(4): 233–239 (in Chinese with English Abstract)Google Scholar
  58. Zheng, Y. Y., Wang, B. S., Fan, Z. F., et al., 2002. Tectonic Evolution and Potential of Copper-Gold Polymetallic Deposit in Eastern Gangdese, Tibet. Geological Science and Technology Information, 21(2): 55–60 (in Chinese with English Abstract)Google Scholar
  59. Zheng, Y. Y., Xue, Y. X., Cheng, L. J., et al., 2004a. Finding, Characteristics and Significance of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1): 103–108 (in Chinese with English Abstract)Google Scholar
  60. Zheng, Y. Y., Gao, S. B., Cheng, L. J. et al., 2004b. Finding and Significances of Chongjiang Porphyry Copper (Molybdenum, Gold) Deposit, Tibet. Earth Science, 29(3): 333–339 (in Chinese with English Abstract)Google Scholar
  61. Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Constraints on the Age of Diagenesis and Metallogenic Epoch of Zhunuo Porphyry Copper Deposit in Tibet. Chinese Science Bulletin, 52(21): 2542–2548 (in Chinese)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geological SurveyChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.Faculty of Earth ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations