Advertisement

Journal of Earth Science

, Volume 29, Issue 6, pp 1431–1442 | Cite as

Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia

  • Anatoly M. BelyaevEmail author
Volcanology
  • 50 Downloads

Abstract

Geological surveys showed that rhyolite and basalt strata with pillow structures typical for underwater volcanism form sheets over the Svecofennian basement. Original geochemical and isotope-geochemical data confirmed that the rhyolites were formed contemporaneously with the rapakivi granites of the Wiborg Massif (1 640 Ma), and the basalts are similar to gabbro-anorthosites. Abnormally high content of K2O and relatively low content of Na2O in rhyolites and basalts are interpreted as a result of hydrothermal interaction of eruptive magmas with K-enriched hot seawater. The strata of siliceous metasedimentary rocks (microquartzites) within basaltic and rhyolitic lavas were formed in processes of chemogenic sedimentation and subsequent contact metamorphism during underwater volcanism. Microquartzites showed carbon vastly depleted of heavy isotope 13С. This is typical for rocks formed with participation of living substance. The Raman spectra of the remaining carbon-containing substance have graphite bands. In the microquartzites among basalts and rhyolites we found a community of structures with external and internal morphology similar to modern or fossilized marine microorganisms: spiral cyanobacterias, amoebas, diatoms, foraminifers, virus capsids, flagellates and multicellular organisms. It is assumed that these silificated and ferruginizated microfossils represent the Paleoproterozoic community of marine microorganisms.

Key words

submarine volcanism siliceous rocks silification Paleoproterozoic microfossils carbon isotopes 

Notes

Acknowledgments

The would like to thank my colleagues for technical support: Gennady M. Belyaev, Natalia V. Belyaeva, Natalia S. Biske, Yuri B. Bogdanov, Cyril V. Chistyakov, Peter V. Fedorov, Michael M. Filippov, Olga L. Galankina, Michael A. Kholmyanskii, Sergey V. Kobilkov, Vladimir A. Kolodey, Alexander B. Koltsov, Elena A. Mazalova, Natalia V. Platonova, Yuri S. Polekhovski, Edward M. Prasolov, Elena V. Putinseva, Alexey D. Shebanov, Edward V. Tabuns, Yuri Y. Yrchenko, as well as for helpful discussions and comments on the manuscript: Vladimir G. Krivovichev, Ivan I. Podlipski, Andrian V Popov, Paul S. Zelenkovski. Special thanks to Paul V. Yukhalin, General Director of Sidose LLC, and Eugene P. Yukhalin, for participation in the fieldworks and financial support of field trips, and the Russian Geographical Society of the St. Petersburg too. In addition, a thank you to Alexander Alexandrov of Ardis Translation, who kindly proofread the English version of this paper. This work was supported in part by grant from International Science Foundation [ISF, NY, USA] N RI E000, and grants of Russian Foundation for Basic Research (RFBR) (Nos. 95-05-15305, 97-05-65446, and 3.15.865.2013). The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0883-4.

References Cited

  1. Belyaev, A. M., 2013. Petrology of Volcanic Rocks from the Rapakivi Formation (Island Hogland). J. Regional Geology and Metallogeny, St. Petersburg, Russia, 55: 28–36 (in Russian)Google Scholar
  2. Belyaev, A. M., Bogdanov, Y. B., Levchenkov, O. A., 1998. Petrogenesis of the Bimodal Rapakivi-Related Volcanites of the Island of Hogland, 1.64 Ga Wiborg Batholith, Russia. In: Rapakivi Granites and Related Rocks: Correlation on a Global Scale. Madison, USA. Abstr. Vol. IGCP-315 Symp.. 139–140Google Scholar
  3. Belyaev, A. M., Bogdanov, Y. B., Levchenkov, O. A., et al., 1996. Bimodal Volcanic Formations of the Wiborg Batholith on the Island of Hogland (Suursaari), Russia. In: Rapakivi Granites and Related Rocks: Correlation on a Global Scale. Helsinki, Finland. Abstr. Vol. IGCP-315 Symp.). 5Google Scholar
  4. Benning, L. G., Phoenix, V., Yee, M. J., et al., 2002. Molecular Characterization of Cyanobacterial Cells during Silicification: A Synchrotronbased Infrared Study. Geochem. Earth Surf., 6: 259–263Google Scholar
  5. Bickford, M. E., Sides, J. R., Cullers, R. L., 1981. Chemical Evolution of Magmas in the Proterozoic Terrane of the St. Francois Mountains, Southeastern Missouri: 1. Field, Petrographic, and Major Element Data. Journal of Geophysical Research: Solid Earth, 86(B11): 10365–10386.  https://doi.org/10.1029/jb086ib11p10365 Google Scholar
  6. Biske, N. S., Belyaev, A. M., Kolodey, V. A., 2015. Raman Spectrum of Carbonaceous Material from Hornstones of the Island of Hogland (Russia). XII General Meeting of the Russian Mineralogical Society, St. Petersburg, Russia. 185–186 (in Russian)Google Scholar
  7. Filippov, A. N., Kemkin, I. V., 2009. Siliceous-Volcanogenic Complexes of Western Sikhote Alin: Their Stratigraphy and Origin. Russian Journal of Pacific Geology, 3(2): 154–168.  https://doi.org/10.1134/s1819714009020055 CrossRefGoogle Scholar
  8. Frikh-Khar, D. I., 1982. The Interaction of Seawater with Igneous Matter. Soviet Geology, 10: 93–99 (in Russian)CrossRefGoogle Scholar
  9. Grosberg, R. K., Strathmann, R. R., 2007. The Evolution of Multicellularity: A Minor Major Transition?. Annual Review of Ecology, Evolution, and Systematics, 38(1): 621–654.  https://doi.org/10.1146/annurev.ecolsys.36.102403.114735 CrossRefGoogle Scholar
  10. Iyer, L. M., Balaji, S., Koonin, E. V., et al., 2006. Evolutionary Genomics of Nucleo-Cytoplasmic Large DNA Viruses. Virus Research, 117(1): 156–184.  https://doi.org/10.1016/j.virusres.2006.01.009 CrossRefGoogle Scholar
  11. Jehlička, J., Urban, O., Pokorný, J., 2003. Raman Spectroscopy of Carbon and Solid Bitumens in Sedimentary and Metamorphic Rocks. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10): 2341–2352.  https://doi.org/10.1016/s1386-1425(03)00077-5 CrossRefGoogle Scholar
  12. Kisvarsanyi, E. B., 1972. Petrochemistry of Precambrian Igneous Province, St. Francois Mountains, Missouri. Report of Investigations, No. 51. Rolla, Missouri, USA. 97Google Scholar
  13. Kooistra, W. H. C. F., Medlin, L. K., 1996. Evolution of the Diatoms (Bacillariophyta) IV: A Reconstruction of Their Age from Small Subunit rRNA Coding Regions and the Fossil Record. Molecular Phylogenetics and Evolution, 6(3): 391–407CrossRefGoogle Scholar
  14. Lawrence, C. M., Menon, S., Eilers, B. J., et al., 2009. Structural and Functional Studies of Archaeal Viruses. Journal of Biological Chemistry, 284(19): 12599–12603.  https://doi.org/10.1074/jbc.r800078200 CrossRefGoogle Scholar
  15. Orange, F., Chabin, A., Gorlas, A., et al., 2011. Experimental Fossilisation of Viruses from Extremophilic Archaea. Biogeosciences, 8(6): 1465–1475.  https://doi.org/10.5194/bg-8-1465-2011 CrossRefGoogle Scholar
  16. Pawlowski, J., Holzmann, M., Berney, C., et al., 2003. The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences, 100(20): 11494–11498.  https://doi.org/10.1073/pnas.2035132100 CrossRefGoogle Scholar
  17. Rämö, O. T., 1991. Petrogenesis of the Proterozoic Rapakivi Granites and Related Basic Rocks of Southeastern Fennoscandia: Nd and Pb Isotopic and General Geochemical Constraints. Geol. Surv. Finland, Bull., 155Google Scholar
  18. Rämö, O. T., Mänttäri, I., Huhma, H., et al., 2007. 1 635 Ma Bimodal Volcanism Associated with the Wiborg Rapakivi Batholith (Suursaari, Gulf of Finland, Russia). Sixth Hutton Symposium on the Origin of Granitic Rocks. University of Stellenbosch, July 2007, Stellenbosch. 174–175Google Scholar
  19. Renaut, R. W., Jones, B., Tiercelin, J. J., 1998. Rapid in situ Silicification of Microbes at Loburu Hot Springs, Lake Bogoria, Kenya Rift Valley. Sedimentology, 45(6): 1083–1103.  https://doi.org/10.1046/j.1365-3091.1998.00194.x CrossRefGoogle Scholar
  20. Rozanov, A. Y., 2002. Bacterial Paleontology. PIN RAN, Moscow. 88 (in Russian)Google Scholar
  21. Rozanov, A. Y., Astafieva, M. M., 2009. The Evolution of the Early Precambrian Geobiological Systems. Paleontological Journal, 43(8): 911–927.  https://doi.org/10.1134/s0031030109080103 CrossRefGoogle Scholar
  22. Sides, J. R., Bickford, M. E., Shuster, R. D., et al., 1981. Calderas in the Precambrian Terrane of the St. Francois Mountains, Southeastern Missouri. Journal of Geophysical Research: Solid Earth, 86(B11): 10349–10364.  https://doi.org/10.1029/jb086ib11p10349 Google Scholar
  23. Streng, M., Babcock, L. E., Hollingsworth, J. S., 2005. Agglutinated Protists from the Lower Cambrian of Nevada. Journal of Paleontology, 79(6): 1214–1218.  https://doi.org/10.1666/0022-3360(2005)079[1214:apftlc]2.0.co;2 CrossRefGoogle Scholar
  24. Westall, F., Boni, L., Guerzoni, E., 1995. The Experimental Silicification of Microorganisms. Palaeontology, 38(3): 495–528Google Scholar
  25. Yu, J., Fu, H., Zhang, F., et al., 1994. Petrogenesis of Potassic Alkaline Volcanics Associated with Rapakivi Granites in the Proterozoic Rift of Beijing, China. Mineralogy and Petrology, 50(1/2/3): 83–96.  https://doi.org/10.1007/bf01160141 CrossRefGoogle Scholar
  26. Zhang, S. H., Liu, S. W., Zhao, Y., et al., 2007. The 1.75–1.68 Ga Anorthosite-Mangerite-Alkali Granitoid-Rapakivi Granite Suite from the Northern North China Craton: Magmatism Related to a Paleoproterozoic Orogen. Precambrian Research, 155(3/4): 287–312.  https://doi.org/10.1016/j.precamres.2007.02.008 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations