Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 80–94 | Cite as

Fluid Inclusion and H-O Isotope Geochemistry of the Phapon Gold Deposit, NW Laos: Implications for Fluid Source and Ore Genesis

  • Linnan Guo
  • Shusheng LiuEmail author
  • Lin Hou
  • Jieting Wang
  • Meifeng Shi
  • Qiming Zhang
  • Fei Nie
  • Yongfei Yang
  • Zhimin Peng
Article
  • 5 Downloads

Abstract

The Phapon gold deposit, located in northern Laos, is a unique large-scale gold deposit in Luang Prabang-Loei metallogenic belt. It is hosted in the Lower Permian limestone and controlled by a NE-trending ductile-brittle fault system. There are three types of primary ore including auriferous calcite vein type, disseminated type, and breccia type, and the first two are important in the Phapon gold deposit. Based on fluid inclusion petrography and microthermometry, three types of primary fluid inclusions including type 1 liquid-rich aqueous, type 2 vapor-rich aqueous and type 3 daughter mineral-bearing aqueous were identified in hydrothermal calcite grains. The ore-forming fluids are normally homogeneous, as indicated by the widespread type 1 inclusions with identical composition. The coexistence of type 1 and type 2 inclusions, showing similar final homogenization temperature but different compositions, indicate that fluid immiscibility did locally take place in both two types of ores. The results of microthermometry and H-O isotopes geochemistry indicate that there are little differences on ore-fluid geochemistry between the auriferous calcite vein-type and disseminated type ores. The oreforming fluids are characterized by medium-low temperatures (157—268 °C) and low salinity (1.6 wt.%-9.9 wt.% NaCl eq.). It is likely to have a metamorphic-dominant mixed source, which could be associated with dehydration and decarbonisation of Lower Permian limestone and Middle-Upper Triassic sandstones during the dynamic metamorphism. The fluid-wallrock interaction played a major role, and the locally occurred fluid-immiscible processes played a subordinate role in gold precipitation. Combined with the regional and ore deposit geology, and ore-fluid geochemistry, we suggest that the Phapon gold deposit is best considered to be a member of the epizonal orogenic deposit class.

Key words

fluid inclusion H-O isotopes fluid source ore genesis Phapon gold deposit northern Laos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the geologists from the Tianjin Huakan Mining Investment, Co., Ltd. with their assistance with the field work in the Phapon gold deposit. This study was financially supported by the China Geological Survey Project (No. 121201010000150013). The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0866-5.

References Cited

  1. Anderson, M. R., Rankin, A. H., Spiro, B., 1992. Fluid Mixing in the Generation of Mesothermal Gold Mineralisation in the Transvaal Sequence, Transvaal, South Africa. European Journal of Mineralogy, 4(5): 933–948.  https://doi.org/10.1127/ejm/4/5/0933 CrossRefGoogle Scholar
  2. Bakker, R. J., 2003. Package Fluids 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 194(1/2/3): 3–23.  https://doi.org/10.1016/s0009-2541(02)00268-1 Google Scholar
  3. Bakker, R. J., Jansen, J. B. H., 1994. A Mechanism for Preferential H2O Leakage from Fluid Inclusions in Quartz, Based on TEM Observations. Contributions to Mineralogy and Petrology, 116(1/2): 7–20.  https://doi.org/10.1007/bf00310686 CrossRefGoogle Scholar
  4. Benning, L. G., Seward, T. M., 1996. Hydrosulphide Complexing of Au(I) in Hydrothermal Solutions from 150–400 ºC and 500–1 500 Bar. Geochimica et Cosmochimica Acta, 60(11): 1849–1871.  https://doi.org/10.1016/0016-7037(96)00061-0 CrossRefGoogle Scholar
  5. Blanchard, S., Rossignol, C., Bourquin, S., et al., 2013. Late Triassic Volcanic Activity in South-East Asia: New Stratigraphical, Geochronological and Paleontological Evidence from the Luang Prabang Basin (Laos). Journal of Asian Earth Sciences, 70/71: 8–26.  https://doi.org/10.1016/j.jseaes.2013.02.024 CrossRefGoogle Scholar
  6. Brown, P. E., Hagemann, S. G., 1995. MacFlinCor and Its Application to Fluids in Archean Lode-Gold Deposits. Geochimica et Cosmochimica Acta, 59(19): 3943–3952.  https://doi.org/10.1016/0016-7037(95)00254-w CrossRefGoogle Scholar
  7. Cox, S. F., Sun, S. S., Etheridge, M. A., et al., 1995. Structural and Geochemical Controls on the Development of Turbidite-Hosted Gold Quartz Vein Deposits, Wattle Gully Mine, Central Victoria, Australia. Economic Geology, 90(6): 1722–1746.  https://doi.org/10.2113/gsecongeo.90.6.1722 CrossRefGoogle Scholar
  8. Dai, F. Y., Niu, Y. J., 2014. Characters of Mineralogy and Genesis of Phabon Gold Deposit in Luang Prabang Province, Laos. Mineral Exploration, 5(3): 511–518 (in Chinese with English Abstract)Google Scholar
  9. Faure, G., 1986. Principles of Isotope Geology: 2nd Edition. Wiley, New York. 1–589Google Scholar
  10. Gammons, C. H., 1994. New Data on the Stability of Gold(I) Chloride Complexes at 300 ºC. Mineralogical Magazine, 58(A1): 309–310.  https://doi.org/10.1180/minmag.1994.58a.1.163 Google Scholar
  11. Gebre-Mariam, M., Groves, D. I., McNaughton, N. J., et al., 1993. Archaean Au-Ag Mineralisation at Racetrack, near Kalgoorlie, Western Australia: A High Crustal-Level Expression of the Archaean Composite Lode-Gold System. Mineralium Deposita, 28(6): 375–387.  https://doi.org/10.1007/bf02431597 CrossRefGoogle Scholar
  12. Goldfarb, R. J., Taylor, R. D., Collins, G. S., et al., 2014. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Research, 25(1): 48–102.  https://doi.org/10.1016/j.gr.2013.03.002 CrossRefGoogle Scholar
  13. Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31. Society for Sedimentary Geology, 199CrossRefGoogle Scholar
  14. Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relationship to other Gold Deposit Types. Ore Geology Reviews, 13(1/2/3/4/5): 7–27.  https://doi.org/10.1016/s0169-1368(97)00012-7 Google Scholar
  15. Guo, L. N., Goldfarb, R. J., Wang, Z. L., et al., 2017. A Comparison of Jiaojia-And Linglong-Type Gold Deposit Ore-Forming Fluids: Do they Differ?. Ore Geology Reviews, 88: 511–533.  https://doi.org/10.1016/j.oregeorev.2016.12.003 CrossRefGoogle Scholar
  16. Guo, L. N., 2016. Metallogenic Mechanism of the Jiaodong-Type Gold Deposit, Shandong Province, China: [Dissetation]. (in Chinese with English Abstract)Google Scholar
  17. Guo, L. N., Hou, L., Liu, S. S., et al., 2018. Rare Earth Elements Geochemistry and C-O Isotope Characteristics of Hydrothermal Calcites: Implications for Fluid-Rock Reaction and Ore-Forming Processes in the Phapon Gold Deposit, NW Laos. Minerals, 8(10): 438.  https://doi.org/10.3390/min8100438 CrossRefGoogle Scholar
  18. Hayashi, K. I., Ohmoto, H., 1991. Solubility of Gold in NaCl-and H2SBearing Aqueous Solutions at 250–350 ºC. Geochimica et Cosmochimica Acta, 55(8): 2111–2126.  https://doi.org/10.1016/0016-7037(91)90091-i CrossRefGoogle Scholar
  19. Hu, J. C., Zhi, D. Q., Zhu, Y. P., 2013. The Geological Characteristics and Ore Genesis of Laterite Gold Mineralization in Laos Phapon. Contributions to Geology & Mineral Resources Research, 28: 462–467 (in Chinese with English Abstract)Google Scholar
  20. Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624–633.  https://doi.org/10.1016/j.jseaes.2008.09.004 CrossRefGoogle Scholar
  21. Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165–184.  https://doi.org/10.1016/j.gr.2013.06.011 CrossRefGoogle Scholar
  22. Kamvong, T., 2013. Geology and Genesis of Porphyry-Skarn Cu-Au Deposits of the Northern Loei and Truong Son Fold Belts: [Dissetation]. ARC Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, AustraliaGoogle Scholar
  23. Lawrence, D. M., Treloar, P. J., Rankin, A. H., et al., 2013. A Fluid Inclusion and Stable Isotope Study at the Loulo Mining District, Mali, West Africa: Implications for Multifluid Sources in the Generation of Orogenic Gold Deposits. Economic Geology, 108(2): 229–257.  https://doi.org/10.2113/econgeo.108.2.229 CrossRefGoogle Scholar
  24. Li, H. K., Zhang, X. J., Wang, J., 2011. Genesis of Phapon Au Deposit in Luangprabang, Laos. Yunnan Geology, 30(3): 280–284 (in Chinese with English Abstract)Google Scholar
  25. Lin, F. C., Li, Z. X., Shi, M. F., et al., 2010. Geological Background and Metallogenic Regularities of the Sanjiang-Mekong Metallogenic Belt. Internal Materials of Chengdu Center, China Geological Survey, Chengdu (in Chinese)Google Scholar
  26. Liu, P. H., Liu, F. L., Wang, F., et al., 2013. Petrological, Geochronological Preliminary Study of the Xiliu ~2.1 Ga Meta-Gabbro from the Jiaobei Terrane, the Southern Segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29: 2371–2390 (in Chinese with English Abstract)Google Scholar
  27. Lu, F. F., Yang, H. L., Tong W. H., et al., 2015. Inclusion Characteristics of Phabon Gold Deposit, Laos. Henan Science, 33(11): 1985–1989 (in Chinese with English Abstract)Google Scholar
  28. Mikucki, E. J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1/2/3/4/5): 307–321.  https://doi.org/10.1016/s0169-1368(97)00025-5 Google Scholar
  29. Naden, J., Shepherd, T. J., 1989. Role of Methane and Carbon Dioxide in Gold Deposition. Nature, 342(6251): 793–795.  https://doi.org/10.1038/342793a0 CrossRefGoogle Scholar
  30. Niu, Y. J., Liu, W., Gao, Y. L., et al., 2015. Geochemical Characteristics of Stable Isotopes and REE at the PHAPUN Gold Deposit in Laos. Geological Survey and Research, 38(4): 277–283 (in Chinese with English Abstract)Google Scholar
  31. Niu, Y. J., Sun, H. Y., Wang, J. S., et al., 2017. Study on Feature of Ore-Forming Fluid and Ore Genesis of Phapon Gold Deposit, Luangprobang, Laos. Contributions to Geology and Mineral Resources Research, 32(2): 317–323 (in Chinese with English Abstract)Google Scholar
  32. O’Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547–5558.  https://doi.org/10.1063/1.1671982 CrossRefGoogle Scholar
  33. Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551–578.  https://doi.org/10.2113/gsecongeo.67.5.551 CrossRefGoogle Scholar
  34. Phajuy, B., Panjasawatwong, Y., Osataporn, P., 2005. Preliminary Geochemical Study of Volcanic Rocks in the Pang Mayao Area, Phrao, Chiang Mai, Northern Thailand: Tectonic Setting of Formation. Journal of Asian Earth Sciences, 24(6): 765–776.  https://doi.org/10.1016/j.jseaes.2004.06.001 CrossRefGoogle Scholar
  35. Phillips, G. N., Powell, R., 2010. Formation of Gold Deposits: A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6): 689–718.  https://doi.org/10.1111/j.1525-1314.2010.00887.x CrossRefGoogle Scholar
  36. Pichavant, M., Ramboz, C., Weisbrod, A., 1982. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data—A Theoretical and Geometrical Approach. Chemical Geology, 37(1/2): 1–27.  https://doi.org/10.1016/0009-2541(82)90064-x CrossRefGoogle Scholar
  37. Pokrovski, G. S., Tagirov, B. R., Schott, J., et al., 2009. A New View on Gold Speciation in Sulfur-Bearing Hydrothermal Fluids from in Situ X-Ray Absorption Spectroscopy and Quantum–Chemical Modeling. Geochimica et Cosmochimica Acta, 73(18): 5406–5427.  https://doi.org/10.1016/j.gca.2009.06.007 CrossRefGoogle Scholar
  38. Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342–357.  https://doi.org/10.1016/j.jseaes.2014.11.035 CrossRefGoogle Scholar
  39. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016a. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60–75.  https://doi.org/10.1016/j.lithos.2015.07.019 CrossRefGoogle Scholar
  40. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016b. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365–377.  https://doi.org/10.1007/s12583-016-0669-5 CrossRefGoogle Scholar
  41. Qiu, K. F., Song, K. R., Song, Y. H., 2015. Magmatic-Hydrothermal Fluid Evolution of the Wenquan Porphyry Molybdenum Deposit in the North Margin of the Western Qinling, China. Acta Petrologica Sinica, 31: 3391–3404 (in Chinese with English Abstract)Google Scholar
  42. Qiu, K. F., Deng, J., Taylor, R. D., et al., 2016a. Paleozoic Magmatism and Porphyry Cu-Mineralization in an Evolving Tectonic Setting in the North Qilian Orogenic Belt, NW China. Journal of Asian Earth Sciences, 122: 20–40.  https://doi.org/10.1016/j.jseaes.2016.02.007 CrossRefGoogle Scholar
  43. Qiu, K. F., Taylor, R. D., Song, Y. H., et al., 2016b. Geologic and Geochemical Insights into the Formation of the Taiyangshan Porphyry Copper-Molybdenum Deposit, Western Qinling Orogenic Belt, China. Gondwana Research, 35: 40–58.  https://doi.org/10.1016/j.gr.2016.03.014 CrossRefGoogle Scholar
  44. Qiu, K. F., Marsh, E., Yu, H. C., et al., 2017. Fluid and Metal Sources of the Wenquan Porphyry Molybdenum Deposit, Western Qinling, NW China. Ore Geology Reviews, 86: 459–473.  https://doi.org/10.1016/j.oregeorev.2017.02.035 CrossRefGoogle Scholar
  45. Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data, II. Interpretation of Fluid Inclusion Data in Terms of Immiscibility. Chemical Geology, 37(1/2): 29–48.  https://doi.org/10.1016/0009-2541(82)90065-1 Google Scholar
  46. Rossignol, C., Bourquin, S., Poujol, M., et al., 2016. The Volcaniclastic Series from the Luang Prabang Basin, Laos: A Witness of a Triassic Magmatic Arc?. Journal of Asian Earth Sciences, 120: 159–183.  https://doi.org/10.1016/j.jseaes.2016.02.001 CrossRefGoogle Scholar
  47. Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307–334.  https://doi.org/10.2113/gsecongeo.103.2.307 CrossRefGoogle Scholar
  48. Salam, A., Zaw, K., Meffre, S., et al., 2007. Geological Setting, Alteration, Mineralization and Geochronology of Chatree Epithermal Gold-Silver Deposit, Phetchabun Province, Central Thailand. Proceedings of Ores and Orogenesis Symposium, September 24–30, 2007, Tucson, ArizonaGoogle Scholar
  49. Salam, A., Zaw, K., Meffre, S., et al., 2008. Mineralization and Oxygen Isotope Zonation of Chatree Epithermal Gold-Silver Deposit, Phetchabun Province, Central Thailand. PACRIM Congress, Extended Abstract, Australian Institute of Mining and Metallurgy, November 24–26, 2008, Gold Coast, Australia. 123–131Google Scholar
  50. Salam, A., 2013. A geological, Geochemical and Metallogenic Study of the Chatree Epithermal Deposit, Petchabun Province, Central Thailand: [Dissertation]. ARC Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart. 250Google Scholar
  51. Salam, A., Zaw, K., Meffre, S., et al., 2014. Geochemistry and Geochronology of the Chatree Epithermal Gold-Silver Deposit: Implications for the Tectonic Setting of the Loei Fold Belt, Central Thailand. Gondwana Research, 26(1): 198–217.  https://doi.org/10.1016/j.gr.2013.10.008 CrossRefGoogle Scholar
  52. Seward, T. M., 1973. Thio Complexes of Gold and the Transport of Gold in Hydrothermal Ore Solutions. Geochimica et Cosmochimica Acta, 37(3): 379–399.  https://doi.org/10.1016/0016-7037(73)90207-x CrossRefGoogle Scholar
  53. Seward, T. M., 1990. The Hydrothermal Geochemistry of Gold, Gold Metallogeny and Exploration. Springer, Amsterdam. 37–62Google Scholar
  54. Shao, C. L., 2011. The Geological Characteristics and Prospecting Criteria of the Phabon Gold Deposit, Laos. Geological Survey and Research, 34(3): 203–209 (in Chinese with English Abstract)Google Scholar
  55. Shi, M. F., Lin, F. C., Fan, W. Y., et al., 2015. Zircon U-Pb Ages and Geochemistry of Granitoids in the Truong Son Terrane, Vietnam: Tectonic and Metallogenic Implications. Journal of Asian Earth Sciences, 101: 101–120.  https://doi.org/10.1016/j.jseaes.2015.02.001 CrossRefGoogle Scholar
  56. Shi, L. H., Xue, L. H., Sun, H. Y., 2016. Characteristic of Wall Rock Alteration and Its Relation with Gold Mineralization of the Phapon Gold Deposit in Laos. Geological Survey and Research, 39(3): 184–190 (in Chinese with English Abstract)Google Scholar
  57. Tangwattananukul, L., Ishiyama, D., Matsubaya, O., et al., 2009. Gold Mineralization of Q Prospect at Chatree Deposit, Central Thailand. NMCC Annual Report, 16: 70–75Google Scholar
  58. Wang, H., Lin, F. C., Li, Z. X., et al., 2015. The Division of Tectonic Units and Tectonic Evolution in Laos and Its Adjacent Regions. Geology in China, 42(1): 71–83 (in Chinese with English Abstract)Google Scholar
  59. Weatherley, D. K., Henley, R. W., 2013. Flash Vaporization during Earthquakes Evidenced by Gold Deposits. Nature Geoscience, 6(4): 294–298.  https://doi.org/10.1038/ngeo1759 CrossRefGoogle Scholar
  60. Wilkinson, J. J., Johnston, J. D., 1996. Pressure Fluctuations, Phase Separation, and Gold Precipitation during Seismic Fracture Propagation. Geology, 24(5): 395.  https://doi.org/10.1130/0091-7613(1996)024<0395:pfpsag>2.3.co;2 CrossRefGoogle Scholar
  61. Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009. Gold in Solution. Elements, 5(5): 281–287.  https://doi.org/10.2113/gselements.5.5.281 CrossRefGoogle Scholar
  62. Xavier, R. P., Foster, R. P., 1999. Fluid Evolution and Chemical Controls in the Fazenda Maria Preta (FMP) Gold Deposit, Rio Itapicuru Greenstone Belt, Bahia, Brazil. Chemical Geology, 154(1/2/3/4): 133–154.  https://doi.org/10.1016/s0009-2541(98)00128-4 Google Scholar
  63. Xue, L. H., Shi, L. H., 2016. Mineralization and Metallogenic Evolution of the Phapon Gold Deposit, Laos. Geological Survey and Research, 39(3): 191–203 (in Chinese with English Abstract)Google Scholar
  64. Yang, L. Q., Deng, J., Guo, L. N., et al., 2016a. Origin and Evolution of Ore Fluid, and Gold-Deposition Processes at the Giant Taishang Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Reviews, 72: 585–602.  https://doi.org/10.1016/j.oregeorev.2015.08.021 CrossRefGoogle Scholar
  65. Yang, L. Q., Deng, J., Wang, Z. L., et al., 2016b. Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Economic Geology, 111(1): 105–126.  https://doi.org/10.2113/econgeo.111.1.105 CrossRefGoogle Scholar
  66. Yang, C. Z., Shen, L. X., Zhou, L., et al., 2017. Characteristics of Geology and Structural Geochemistry and Metallogenic Mechanism of Phapon Gold Deposit in Laos. Mineral Resources and Geology, 31(1): 11–22Google Scholar
  67. Zaw, K., Meffre, S., Higher Degree Students, 2007. Metallogenic Relations and Deposit Scale Studies, Final Report: Geochronology, Metallogenesis and Deposit Styles of Loei Fold Belt in Thailand and Laos PDR. ARC Linkage Project, CODES with Industry Partners. University of Tasmania, HobartGoogle Scholar
  68. Zaw, K., Kamvong, T., Khositanont, S., et al., 2011. Oxidized vs. Reduced Cu-Au Skarn Formation and Implication for Exploration, Loei and Truong Son Fold Belts, SE Asia. Proceedings of International Conference on Geology, Geotechnology and Mineral Resources of Indochina (GEOINDO 2011), December 1–3, 2011, Khon Kean, Thailand. 97–100Google Scholar
  69. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30.  https://doi.org/10.1016/j.gr.2013.10.010 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chengdu CenterChina Geological SurveyChengduChina
  2. 2.Tianjin North China Geological Exploration BureauTianjinChina

Personalised recommendations