Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 109–120 | Cite as

Geology, Geochronology, and Hf Isotopic Composition of the Pha Lek Fe Deposit, Northern Laos: Implications for Early Permian Subduction-Related Skarn Fe Mineralization in the Truong Son Belt

  • Lin Hou
  • Shusheng LiuEmail author
  • Linnan Guo
  • Fuhao Xiong
  • Chao Li
  • Meifeng Shi
  • Qiming Zhang
  • Siwei Xu
  • Songyang Wu
Article
  • 5 Downloads

Abstract

The Truong Son metallogenic belt in central Laos and Vietnam is an important Fe-Cu-Sn-Au polymetallic ore district. The Pha Lek Fe deposit is closely related to Late Carboniferous- Early Permian I-type granitic magmatism, and contains >50 Mt @ 45% to 50% of Fe ore. Ore minerals occur mainly as magnetite and hematite in the skarn alteration zone between a granitic pluton and metamorphosed Middle-Upper Devonian carbonates. The granitic pluton comprises granodiorite and granite, with zircon U-Pb dating indicating synchronous emplacement at 288.2±1.3 and 284.9±1.2 Ma, respectively. Zircons from these granitoids have εHf(t) values of 2.9-11.2 and relatively young TDM2 ages (<1.0 Ga), indicating an origin by partial melting of depleted mafic crust or magma mixing. Previous studies have shown that these granitoids have high Y, Yb, and K2O contents, and low Sr and Na2O contents, which are interpreted as the melting of mafic continental crust. Pyrite of the main mineralization stage yields an 187Re/188Os-187Os/188Os isochron age of 287±17 Ma, indicating that mineralization is associated with Pha Lek granitic magmatism. A Late Carboniferous-Early Permian subduction-related skarn-type Fe mineralization model is proposed for the Pha Lek deposit. More evidence is needed to verify a hypothesis of volcanic overprinting during Late Triassic post-collisional extension.

Key words

Truong Son belt Pha Lek Fe deposit granitic intrusions geochronology Hf isotopic composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported financially by the National Natural Science Foundation of China (Nos. 41402074 and 41502074), Applied Fundamental Research Funding of Sichuan Province, China (No. 2015JY0055), and the National Geological Survey Foundation of China (No. 121201010000150013). The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0864-7.

References Cited

  1. Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482–1499.  https://doi.org/10.1016/j.gr.2014.09.017 CrossRefGoogle Scholar
  2. Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269.  https://doi.org/10.1016/s0024-4937(02)00082-8 CrossRefGoogle Scholar
  3. Hoa, T. T., Anh, T. T., Phuong, N. T., et al., 2008. Permo-Triassic Intermediate-Felsic Magmatism of the Truong Son Belt, Eastern Margin of Indochina. Comptes Rendus Geoscience, 340(2/3): 112–126.  https://doi.org/10.1016/j.crte.2007.12.002 CrossRefGoogle Scholar
  4. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439.  https://doi.org/10.1046/j.1525-1314.2000.00266.x CrossRefGoogle Scholar
  5. Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595–2604 (in Chinese with English Abstract)Google Scholar
  6. Lepvrier, C., Maluski, H., van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1/2/3/4): 87–118.  https://doi.org/10.1016/j.tecto.2004.07.030 Google Scholar
  7. Lepvrier, C., Maluski, H., van Vuong, N., et al., 1997. Indosinian NW-Trending Shear Zones within the Truong Son Belt (Vietnam) 40Ar-39Ar Triassic Ages and Cretaceous to Cenozoic Overprints. Tectonophysics, 283(1/2/3/4): 105–127.  https://doi.org/10.1016/s0040-1951(97)00151-0 Google Scholar
  8. Lepvrier, C., van Vuong, N., Maluski, H., et al., 2008. Indosinian Tectonics in Vietnam. Comptes Rendus Geoscience, 340(2/3): 94–111.  https://doi.org/10.1016/j.crte.2007.10.005 CrossRefGoogle Scholar
  9. Li, C., Qu, W. J., Du, A. D., et al. 2009. Comprehensive Study on Extraction of Rhenium with Acetone in Re-Os Isotopic Dating. Rock and Mineral Analysis, 28(3): 233–238 (in Chinese with English Abstract)Google Scholar
  10. Li, C., Qu, W. J., Zhou, L. M., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14–16 (in Chinese with English Abstract)Google Scholar
  11. Li, Y. G., Wang, S. S., Liu, M. W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application. Acta Geologica Sinica, 89(12): 2400–2418 (in Chinese with English Abstract)Google Scholar
  12. Liu, J. T., Yang, L. Q., Lu, L., 2013. Pulang Reduced Porphyry Copper Deposit in the Zhongdian Area, Southwest China: Constrains by the Mineral Assemblages and the Ore-Forming Fluid Compositions. Acta Petrologica Sinica, 29(11): 3914–3924 (in Chinese with English Abstract)Google Scholar
  13. Ludwig, K. R., 2001. SQUID 1.02: A User Manual, a Geochronological Tollkit for Microsoft Excel. Berkeley Geochronology Center, California. 1–19Google Scholar
  14. Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronology Center, California. 1–74Google Scholar
  15. Manaka, T., Zaw, K., Meffre, S., 2008. Geological and Tectonic Setting of Cu-Au Deposits in Northern Lao P.D.R.. Great 2008, 4th IGCP 516, and 5th APSEG, BangkokGoogle Scholar
  16. Manaka, T., Zaw, K., Meffre, S., et al., 2014. The Ban Houayxai Epithermal Au-Ag Deposit in the Northern Lao PDR: Mineralization Related to the Early Permian Arc Magmatism of the Truong Son Fold Belt. Gondwana Research, 26(1): 185–197.  https://doi.org/10.1016/j.gr.2013.08.024 CrossRefGoogle Scholar
  17. Mao, H. J., 2012. Geology and Metallogeny of the Pha Lek Deposit in Truong Son Belt, Laos: [Dissertation]. Chengdu University of Technology, Chengdu. 1–104Google Scholar
  18. Morelli, R. M., Creaser, R. A., Selby, D., et al., 2005. Re-Os Geochronology of Arsenopyrite in Meguma Group Gold Deposits, Meguma Terrane, Nova Scotia, Canada: Evidence for Multiple Gold-Mineralizing Events. Economic Geology, 100(6): 1229–1242.  https://doi.org/10.2113/gsecongeo.100.6.1229 CrossRefGoogle Scholar
  19. Nier, A. O., 1937. A Mass Spectrometer for Routine Isotope Abundance Measurements. Review of Scientific Instruments, 11(7): 212–216.  https://doi.org/10.1063/1.1751688 CrossRefGoogle Scholar
  20. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016a. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365–377.  https://doi.org/10.1007/s12583-016-0669-5 CrossRefGoogle Scholar
  21. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016b. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60–75.  https://doi.org/10.1016/j.lithos.2015.07.019 CrossRefGoogle Scholar
  22. Qian, X., Wang, Y. J., Feng, Q. L., et al., 2016c. Petrogenesis and Tectonic Implication of the Late Triassic Post-Collisional Volcanic Rocks in Chiang Khong, NW Thailand. Lithos, 248–251: 418–431.  https://doi.org/10.1016/j.lithos.2016.01.024 Google Scholar
  23. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2017. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in SE Thailand: Geochronological and Geochemical Constraints. Lithos, 286/287: 440–453.  https://doi.org/10.1016/j.lithos.2017.06.026 CrossRefGoogle Scholar
  24. Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342–357.  https://doi.org/10.1016/j.jseaes.2014.11.035 CrossRefGoogle Scholar
  25. Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1–26.  https://doi.org/10.1016/j.oregeorev.2011.05.006 CrossRefGoogle Scholar
  26. Roger, F., Jolivet, M., Maluski, H., et al., 2014. Emplacement and Cooling of the Dien Bien Phu Granitic Complex: Implications for the Tectonic Evolution of the Dien Bien Phu Fault (Truong Son Belt, NW Vietnam). Gondwana Research, 26(2): 785–801.  https://doi.org/10.1016/j.gr.2013.07.018 CrossRefGoogle Scholar
  27. Schwindinger, M., Weinberg, R. F., 2017. A Felsic MASH Zone of Crustal Magmas—Feedback between Granite Magma Intrusion and in situ Crustal Anatexis. Lithos, 284–285: 109–121.  https://doi.org/10.1016/j.lithos.2017.03.030 CrossRefGoogle Scholar
  28. Shi, M. F., Lin, F. C., Fan, W. Y., et al., 2015. Zircon U-Pb Ages and Geochemistry of Granitoids in the Truong Son Terrane, Vietnam: Tectonic and Metallogenic Implications. Journal of Asian Earth Sciences, 101: 101–120.  https://doi.org/10.1016/j.jseaes.2015.02.001 CrossRefGoogle Scholar
  29. Tran, H. T., Zaw, K., Halpin, J. A., et al., 2014. The Tam Ky-Phuoc Son Shear Zone in Central Vietnam: Tectonic and Metallogenic Implications. Gondwana Research, 26(1): 144–164.  https://doi.org/10.1016/j.gr.2013.04.008 CrossRefGoogle Scholar
  30. Tran, T. H., Ching, Y. L., Tadashi, U., et al., 2015. Petrogenesis of Late Permian Silicic Rocks of Tu Le Basin and Phan Si Pan Uplift (NW Vietnam) and Their Association with the Emeishan Large Igneous Province. Journal of Earth Science, 109: 1–19.  https://doi.org/10.1016/j.jseaes.2015.05.009 Google Scholar
  31. Wang, C., Liang, X. Q., Foster, D. A., et al., 2016. Detrital Zircon U-Pb Geochronology, Lu-Hf Isotopes and REE Geochemistry Constrains on the Provenance and Tectonic Setting of Indochina Block in the Paleozoic. Tectonophysics, 677/678: 125–134.  https://doi.org/10.1016/j.tecto.2016.04.008 CrossRefGoogle Scholar
  32. Wang, J. L., Lin, F. C., Zhu, H. P., et al., 2013. SHRIMP Zircon U-Pb Dating of the Ore-forming Monzogranite from the Phalek Iron Deposit, Vientiane, Laos and Its Geological Implications. Sedimentary Geology and Tethyan Geology, 33(3): 87–93 (in Chinese with English Abstract)Google Scholar
  33. Wang, M., Li, C., Wu, Y. W., et al., 2014. Geochronology, Geochemistry, Hf Isotopic Compositions and Formation Mechanism of Radial Mafic Dikes in Northern Tibet. International Geology Review, 56(2): 187–205.  https://doi.org/10.1080/00206814.2013.825076 CrossRefGoogle Scholar
  34. Wang, Y. J., He, H. Y., Zhang, Y. Z., et al., 2017a. Origin of Permian OIB-Like Basalts in NW Thailand and Implication on the Paleotethyan Ocean. Lithos, 274/275: 93–105.  https://doi.org/10.1016/j.lithos.2016.12.021 Google Scholar
  35. Wang, Y. J., Qian, X., Cawood, P. A., et al., 2017b. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195–230.  https://doi.org/10.1016/j.earscirev.2017.09.013 CrossRefGoogle Scholar
  36. Wu, C., Liu, Y., Cao, M. J., et al., 2015. Characteristics and Formation Mechanism of Reduced Porphyry Cu and Mo-Cu Deposits. Acta Petrologica Sinica, 31(2): 617–638 (in Chinese with English Abstract)Google Scholar
  37. Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)Google Scholar
  38. Yan, D. P., Zhou, M. F., Wang, C. Y., et al., 2006. Structural and Geochronological Constraints on the Tectonic Evolution of the Dulong-Song Chay Tectonic Dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4/5/6): 332–353.  https://doi.org/10.1016/j.jseaes.2005.10.011 CrossRefGoogle Scholar
  39. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30.  https://doi.org/10.1016/j.gr.2013.10.010 CrossRefGoogle Scholar
  40. Zhao, B., Zhang, D. H., Shi, C. L., et al., 2014. Rethinking of the Metallogenic Specialization and Ore-Forming Potential of Redox-Related Granitoid. Acta Petrologica et Mineralogica, 33(5): 955–964 (in Chinese with English Abstract)Google Scholar
  41. Zhao, H. J., Chen, Y. Q., Lu, Y. X., 2011. Ore-Forming Model for Cu-Au-Fe Ore Deposits Associated with Granites in the Truongson Ore-Forming Belt of Laos. Geological Bulletin of China, 30(10): 1619–1627 (in Chinese with English Abstract)Google Scholar
  42. Zhou, G. F., Fan, W. Y., Wu, Z. B., et al., 2012. Geological Characteristics and Prospecting Target of the Pali Mountain Iron Deposit in SaiSong-Wen County, Vientiane Province, Laos. Geology in China, 39(5): 1375–1386 (in Chinese with English Abstract)Google Scholar
  43. Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science China Series D: Earth Sciences, 39(7): 833–848 (in Chinese with English Abstract)Google Scholar
  44. Zhu, H. P., Fan, W. Y., Mao, H. J., et al., 2014. Geological Characteristics and Metallogenesis of the PHaLek Iron Deposit in Vientiane Province, Laos. Journal of Jilin University: Earth Science Edition, 44(5): 1492–1501Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chengdu CenterChina Geological SurveyChengduChina
  2. 2.Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation of Ministry of Land and ResourcesChengdu University of TechnologyChengduChina
  3. 3.National Research Center of GeoanalysisChinese Academy of Geological ScienceBeijingChina
  4. 4.China University of GeosciencesBeijingChina

Personalised recommendations