Journal of Earth Science

, Volume 30, Issue 1, pp 37–51 | Cite as

Geochronology and Petrochemistry of Volcanic Rocks in the Xaignabouli Area, NW Laos

  • Meifeng ShiEmail author
  • Zhenbo Wu
  • Shusheng Liu
  • Zhimin Peng
  • Linnan Guo
  • Fei Nie
  • Siwei Xu


An integrated study of zircon U-Pb geochronology and petrochemistry, together with zircon Lu-Hf isotopes, has been carried out on the basaltic-andesitic tuff and volcanic breccia from the Nam Hang Formation and andesitic tuff from the Muang-Nan Formation in the Xaignabouli area, which had been mapped as the Permian-Early Triassic on the 1 : 1 000 000 geological map or Late Carboniferous on the 1 : 200 000 geological maps. Zircon U-Pb dating of three samples yielded weighted mean ages of 235±2.6, 232±1.4 and 278±2.8 Ma, respectively, suggesting a Late Triassic origin for the Nam Hang Formation and an Early Permian origin for the Muang-Nan Formation. Geochemically, they are characterized by depletions in HFSEs (e.g., Nb, Ta, Ti) and high LILE/HFSE ratios, and they have positive zircon εHf(t) values of 8.7-15.9, which exhibits the continental arc volcanic affinity and partial melting of subducting oceanic slab in the magma source. Combined with spatial occurrence of the volcanic rock and existing geochronological and geochemical data, we suggest that the Xaignabouli-Luang Prabang volcanic belt can be linked to the Loei-Phetchabun belt. The Permian-Triassic volcanic rocks in this belt might be a product of the Nan back-arc basin eastward subduction.

Key words

volcanic rock zircon U-Pb geochronology geochemistry zircon Lu-Hf isotope Xaignabouli Laos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We appreciate the helpful comments from two anonymous referees to improve an early version of this paper. This study was financially supported by the China Geological Survey (No. 121201010000150013). The final publication is available at Springer via

References Cited

  1. Barr, S. M., Charusiri, P., 2011. Volcanic Rocks. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London. 415–439Google Scholar
  2. Blanchard, S., Rossignol, C., Bourquin, S., et al., 2013. Late Triassic Volcanic Activity in South-East Asia: New Stratigraphical, Geochronological and Paleontological Evidence from the Luang Prabang Basin (Laos). Journal of Asian Earth Sciences, 70/71: 8–26. Google Scholar
  3. Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574. CrossRefGoogle Scholar
  4. DGM, 1990. Lao P.D.R. Geological and Mineral Occurrence Map 1: 1 000 000. Department of Geology and Mines, Lao P.D.R., VientianeGoogle Scholar
  5. Faure, M., Lepvrier, C., Nguyen, V. V., et al., 2014. The South China Block-Indochina Collision: Where, When, and How?. Journal of Asian Earth Sciences, 79: 260–274. CrossRefGoogle Scholar
  6. Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2005. Correlation of Triassic Stratigraphy between the Simao and Lampang-Phrae Basins: Implications for the Tectonopaleogeography of Southeast Asia. Journal of Asian Earth Sciences, 24(6): 777–785. CrossRefGoogle Scholar
  7. Hada, S., Bunopas, S., Ishii, K., et al., 1999. Rift-Drift History and the Amalgamation of Shan-Thai and Indochina/East Malaya Blocks. In: Metcalfe, I., ed., Gondwana Dispersion and Asian Accretion. A.A. Balkema, Rotterdam. 7–87Google Scholar
  8. Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. CrossRefGoogle Scholar
  9. Hennig, D., Lehmann, B., Frei, D., et al., 2009. Early Permian Seafloor to Continental Arc Magmatism in the Eastern Paleo-Tethys: U-Pb Age and Nd-Sr Isotope Data from the Southern Lancangjiang Zone, Yunnan, China. Lithos, 113(3/4): 408–422. CrossRefGoogle Scholar
  10. Hou, K. J., Li, Y. H., Tian, Y. Y., 2009. In situ U-Pb Zircon Dating Using Laser Ablation-Multiion Couting-ICP-MS. Mineral Deposits, 28(4): 481–492 (in Chinese with English Abstract)Google Scholar
  11. Hutchison, C.S., 1989. Geological evolution of Southeast Asia. Oxford Monographs on Geology and Geophysis Vol. 13. Clarendon Press, Oxford. 368Google Scholar
  12. Intasopa, S. B., 1993. Petrology and Geochronology of the Volcanic Rocks of the Central Thailand Volcanic Belt: [Dissertation]. University of New Brunswick, Fredericton. 1–242Google Scholar
  13. Intasopa, S., Dunn, T., 1994. Petrology and Sr-Nd Isotopic Systems of the Basalts and Rhyolites, Loei, Thailand. Journal of Southeast Asian Earth Sciences, 9(1/2): 167–180. CrossRefGoogle Scholar
  14. Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165–184. CrossRefGoogle Scholar
  15. Li, S. G., 1994. Implications of εNd-La/Nb, Ba/Nb, Nb/Th Diagrams to Mantle Heterogeneity—Classification of Island Arc Basalts and Decomposition of EMII Component. Geochimica, 23(2): 105–114 (in Chinese with English Abstract)Google Scholar
  16. Liu, J. L., Tran, M. D., Tang, Y., et al., 2012. Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt, NW Vietnam: Geochronology, Geochemistry and Tectonic Implications. Gondwana Research, 22(2): 628–644. CrossRefGoogle Scholar
  17. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. CrossRefGoogle Scholar
  18. Metcalfe, I., 1999. The Tethys: How Many? How Old? How Wide? Intern Symposium Shallow Tethys, Chiang Mai. 5: 1–15Google Scholar
  19. Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9(1/2): 24–46. CrossRefGoogle Scholar
  20. Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3–21. CrossRefGoogle Scholar
  21. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. CrossRefGoogle Scholar
  22. Panjasawatwong, Y., Zaw, K., Chantaramee, S., et al., 2006. Geochemistry and Tectonic Setting of the Central Loei Volcanic Rocks, Pak Chom Area, Loei, Northeastern Thailand. Journal of Asian Earth Sciences, 26(1): 77–90. CrossRefGoogle Scholar
  23. Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285. CrossRefGoogle Scholar
  24. Peng, T. P., Wilde, S. A., Wang, Y. J., et al., 2013. Mid-Triassic Felsic Igneous Rocks from the Southern Lancangjiang Zone, SW China: Petrogenesis and Implications for the Evolution of Paleo-Tethys. Lithos, 168–169: 15–32. CrossRefGoogle Scholar
  25. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016a. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60–75. CrossRefGoogle Scholar
  26. Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016b. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365–377. CrossRefGoogle Scholar
  27. Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342–357. CrossRefGoogle Scholar
  28. Roger, F., Jolivet, M., Maluski, H., et al., 2014. Emplacement and Cooling of the Dien Bien Phu Granitic Complex: Implications for the Tectonic Evolution of the Dien Bien Phu Fault (Truong Son Belt, NW Vietnam). Gondwana Research, 26: 785–801CrossRefGoogle Scholar
  29. Rossignol, C., Bourquin, S., Poujol, M., et al., 2016. The Volcaniclastic Series from the Luang Prabang Basin, Laos: A Witness of a Triassic Magmatic Arc?. Journal of Asian Earth Sciences, 120: 159–183. CrossRefGoogle Scholar
  30. Salam, A., Zaw, K., Meffre, S., et al., 2014. Geochemistry and Geochronology of the Chatree Epithermal Gold-Silver Deposit: Implications for the Tectonic Setting of the Loei Fold Belt, Central Thailand. Gondwana Research, 26(1): 198–217. CrossRefGoogle Scholar
  31. Shi, M. F., Lin, F. C., Fan, W. Y., et al., 2015. Zircon U-Pb Ages and Geochemistry of Granitoids in the Truong Son Terrane, Vietnam: Tectonic and Metallogenic Implications. Journal of Asian Earth Sciences, 101: 101–120. CrossRefGoogle Scholar
  32. Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166–179. CrossRefGoogle Scholar
  33. Sone, M., Metcalfe, I., Chaodumrong, P., 2012. The Chanthaburi Terrane of Southeastern Thailand: Stratigraphic Confirmation as a Disrupted Segment of the Sukhothai Arc. Journal of Asian Earth Sciences, 61: 16–32. CrossRefGoogle Scholar
  34. Song, J. L., Ding J., Wang B. D., et al., 2018. Wenyu Copper (Silver) Deposit Ore-Forming Geological Background, Jingdong County, Yunnan: Geochronology and Geochemistry Evidences from Ore-Bearing Volcanic Rocks.. Earth Science, 43(3): 696–715 (in Chinese with English Abstract)Google Scholar
  35. Stokes, R. B., Lovatt Smith, P. F., Soumphonphakdy, K., 1996. Timing of the Shan-Thai-Indochina Collision: New Evidence from the Pak Lay Foldbelt of the Lao PDR. Geological Society, London, Special Publications, 106(1): 225–232. CrossRefGoogle Scholar
  36. Su, Y. P., Zheng, J. P., Griffin, W. L., et al., 2012. Geochemistry and Geochronology of Carboniferous Volcanic Rocks in the Eastern Junggar Terrane, NW China: Implication for a Tectonic Transition. Gondwana Research, 22(3/4): 1009–1029. CrossRefGoogle Scholar
  37. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. CrossRefGoogle Scholar
  38. Taylor, S. R., McLeannan, S., 1985. The Continental Crust: Composition and Evolution. Blackwell Scientific Publications, Oxford. 54, 209–372Google Scholar
  39. Thassanapak, H., Udchachon, M., Feng, Q. L., et al., 2017. Middle Triassic Radiolarians from Cherts/siliceous Shales in an Extensional Basin in the Sukhothai Fold Belt, Northern Thailand. Journal of Earth Science, 28(1): 9–28. CrossRefGoogle Scholar
  40. Ueno, K., Hisada, K. I., 2001. The Nan-Uttaradit-Sa Kaeo Suture as a Main Paleo-Tethyan Suture in Thailand: Is It Real?. Gondwana Research, 4(4): 804–806. CrossRefGoogle Scholar
  41. Wang, Y. J., Qian, X., Cawood, P. A., et al., 2017. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews. Google Scholar
  42. Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2010. Petrogenesis of Late Triassic Post-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone, Southwest China, and Tectonic Implications for the Evolution of the Eastern Paleotethys: Geochronological and Geochemical Constraints. Lithos, 120(3/4): 529–546. CrossRefGoogle Scholar
  43. Wang, Y. L., Zhang, C. J. Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413–421 (in Chinese with English Abstract)Google Scholar
  44. Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. CrossRefGoogle Scholar
  45. Wood, D. A., 1979. A Variably Veined Suboceanic Upper Mantle—Genetic Significance for Mid-Ocean Ridge Basalts from Geochemical Evidence. Geology, 7(10): 499–503.<499:avvsum>;2 CrossRefGoogle Scholar
  46. Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. CrossRefGoogle Scholar
  47. Wu, Z. B., Liu, S. S., Shi, M. F., et al., 2017. The Report on Regional Geological Mapping. The Geological and Geochemical Mapping in Northern Laos by the Cooperation between China and Laos. 1–257Google Scholar
  48. Yang, W. Q., Feng, Q. L., Shen, S. Y., et al., 2009. Permian Radiolarians, Chert and Basalt from the Nan Suture Zone, Northern Thailand. Earth Science, 34(5): 743–751 (in Chinese with English Abstract)Google Scholar
  49. Yang, W. Q., Qian, X., Feng, Q. L., et al., 2016. Zircon U-Pb Geochronological Evidence for the Evolution of the Nan-Uttaradit Suture in Northern Thailand. Journal of Earth Science, 27(3): 378–390. CrossRefGoogle Scholar
  50. Zaw, K., Meffre, S., 2007. Metallogenic Relations and Deposit-Scale Studies, Final Report: Geochronology, Metallogenesis and Deposit Styles of Loei Fold Belt in Thailand and Laos PDR, ARC Linkage Project, CODES with Industry Partners. University of Tasmania, HobartGoogle Scholar
  51. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30. CrossRefGoogle Scholar
  52. Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115(1/2/3/4): 177–189. Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chengdu CenterChina Geological SurveyChengduChina

Personalised recommendations