Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 20–36 | Cite as

Petrogenesis of the Payangazu Complex in Southern Mandalay, Central Myanmar and Its Tectonic Implications

  • Kaixuan Li
  • Huaying LiangEmail author
  • Zhiwei Bao
  • Wenting Huang
  • Jian Zhang
  • Long Ren
Article
  • 13 Downloads

Abstract

The Payangazu complex in the central Myanmar is composed mainly of quartz diorite, granodiorite, and some synplutonic mafic dikes. The quartz diorite and granodiorite have zircon U-Pb ages of 130.5±4.0 (MSWD=3.5) and 118.4±2.5 Ma (MSWD=2.4), respectively. Rock samples of the quartz diorite and granodiorite are metaluminous, enriched in large-ion lithophile elements like LREE, Rb, Th, and U, and depleted in high field-strength elements such as HREE, Nb, Ta, P, and Ti, indicative of arc-type magmatic affinities. Whole rock samples of the quartz diorite have εHf(t) value of +0.6, initial 87Sr/86Sr ratios of 0.708 6 to 0.710 0, and εNd(t) values of -4.8 to -4.9; whereas rocks of the granodiorite are relatively isotopically enriched, with εHf(t) values of -5.1 to -7.2, initial 87Sr/86Sr ratios of 0.711 7 to 0.711 8, and εNd(t) values of -8.7 to -8.8. The isotopic data together with the high Mg# (both the quartz diorite and granodiorite have Mg# values of >40) suggest a strong involvement of mantle materials in the genesis of the parent magmas. The possible petrogenetic process may be that the ascending of melts from partial melting of metasomatized mantle wedge triggered by dehydration of subducted slab resulted in partial melting of the lower crust and mixed with the latter. These Early Cretaceous intrusions from the complex are older than those found in the eastern Wuntho-Popa arc in western Myanmar, eastern Himalaya, and western Yunnan which are interpreted to be related to the Neo-Tethyan subduction, and have εNd(t), εHf(t) values lower than the latter. On the contrary, the ages and geochemical characteristics of the Payangazu complex are consistent with some of the intrusions in the northern magmatic belt in Tibet, eastern Himalaya, and western Yunnan which are believed to be associated with the subduction of the Bangong-Nujiang Ocean crust. Thus, we propose that the Early Cretaceous intrusions in the central Myanmar are most likely related to the southward subduction of an ocean slab that was possibly an extension of the Bangong-Nujiang Ocean.

Key words

central Myanmar zircon U-Pb age isotope Early Cretaceous subduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This Study was supported by the National Key R & D Program of China (No. 2016YFC0600407) and the Natural Science Foundation of China (Nos. 41772065, 41421062). We thank Dr. Swe Win, Mr. Kyaing Sein and Soe Thura Tun for their assistance during our fieldwork. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0862-9.

References Cited

  1. Barber, A. J., Crow, M. J., Milsom, J. S, 2005. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society Memoirs, London, 31: 1–248CrossRefGoogle Scholar
  2. Barley, M. E., Pickard, A. L., Zaw, K. et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 4–14.  https://doi.org/10.1029/2002TC001398 CrossRefGoogle Scholar
  3. Bertrand, G., Rangin, C., Maluski, H., 2001. Diachronous Cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): The Trace of the Northward Migration of the Indian Syntaxis. Journal of Asian Earth Sciences, 19(5): 649–659.  https://doi.org/10.1016/S1367-9120(00)00061-4 CrossRefGoogle Scholar
  4. Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. Temora 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2): 155–170.  https://doi.org/10.1016/S0009-2541(03)00165-7 CrossRefGoogle Scholar
  5. Blichert-Toft, J., Gleason, J. D., Télouk, P. et al., 1997. The Lu-Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle-Crust System. Earth and Planetary Science Letters, 154(1/2/3/4): 243–258.  https://doi.org/10.1016/S0012-821X(99)00222-8 CrossRefGoogle Scholar
  6. Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy & Petrology, 134(1): 33–51.  https://doi.org/10.1007/s004100050467 CrossRefGoogle Scholar
  7. Chen, X. J., Xu, Z. Q., Sein, K., et al., 2016. The Early Cretaceous Tectonic Magmatism in the Mogok District, Central Myanmar, and Its Implication for the Evolution of Tethy. Acta Geologica Sinica, 90(11): 3060–3080.  https://doi.org/10.3969/j.issn.0001-5717.2016.11.007 (in Chinese with English Abstract)Google Scholar
  8. Chiu, H. Y., Chung, S. L., Wu, F. Y., et al., 2009. Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet. Tectonophysics, 477(1/2): 3–19.  https://doi.org/10.1016/j.tecto.2009.02.034 CrossRefGoogle Scholar
  9. Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9): 745–752.  https://doi.org/10.1130/G22725.1 CrossRefGoogle Scholar
  10. Curray, J. R., 2005. Tectonics and History of the Andaman Sea Region. Journal of Asian Earth Sciences, 25(1): 187–232.  https://doi.org/10.1016/j.jseaes.2004.09.001 CrossRefGoogle Scholar
  11. Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665.  https://doi.org/10.1038/347662a0 CrossRefGoogle Scholar
  12. Defant, M. J., Drummond, M. S., 1993. Mount St. Helens: Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc. Geology, 21(6): 547–550.  https://doi.org/10.1130/0091-7613(1993)021%3C0547:MSHPEO%3E2.3.CO;2 Google Scholar
  13. Gardiner, N. J., Searle, M. P., Robb, L. J., 2015. Neo-Tethyan Magmatism and Metallogeny in Myanmar--An Andean Analogue? Journal of Asian Earth Sciences, 106(1): 197–215.  https://doi.org/10.1016/j.jseaes.2015.03.015 CrossRefGoogle Scholar
  14. Goffé, B., Rangin, C., Maluski, H., 2002. Jade and Associated Rocks from the Jade Mines Area, Northern Myanmar as Record of a Polyphased High-pressure Metamorphism. Asian Earth Sci., 20: 16–17Google Scholar
  15. Goodge, J. W., Vervoort, J. D., 2006. Origin of Mesoproterozoic A-Type Granites in Laurentia: Hf Isotope Evidence. Earth and Planetary Science Letters, 243(3): 711–731.  https://doi.org/10.1016/j.epsl.2006.01.040 CrossRefGoogle Scholar
  16. Goto, A. Tatsumi, Y., 1996. Quantitative Analysis of Rock Samples by an X-Ray Fluorescence Spectrometer (II). The Rigaku Journal, 13(2): 20–38Google Scholar
  17. Hattori, K. H., Guillot, S., 2003. Volcanic Fronts Form as a Consequence of Serpentinite Dehydration in the Forearc Mantle Wedge. Geology, 31(6): 525–528.  https://doi.org/10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2 CrossRefGoogle Scholar
  18. Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455–489.  https://doi.org/10.1007/BF00372365 CrossRefGoogle Scholar
  19. Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62.  https://doi.org/10.2113/0530027 CrossRefGoogle Scholar
  20. Huangfu, P. P., Wang, Y., Li, Z., et al., 2016. Effects of Crustal Eclogitization on Plate Subduction-Collision Dynamics: Implications for India-Asia Collision. Journal of Earth Science, 27(5): 727–739.  https://doi.org/10.1007/s12583-016-0701-9 CrossRefGoogle Scholar
  21. Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 59(11): 2239–2258.  https://doi.org/10.1016/0016-7037(95)00103-7 CrossRefGoogle Scholar
  22. Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3/4): 229–245.  https://doi.org/10.1016/j.chemgeo.2009.01.020 CrossRefGoogle Scholar
  23. Jiang, H., Li, W. Q., Jiang, S. Y., et al., 2017. Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Petrogenesis of Late Cretaceous A-type Granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos, 268–271: 32–47.  https://doi.org/10.1016/j.lithos.2016.11.005 CrossRefGoogle Scholar
  24. Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1/2): 193–205.  https://doi.org/10.1016/S0012-821X(97)00018-6 CrossRefGoogle Scholar
  25. Li, X. H., Li, Z. X., Wingate, M. T. D., et al., 2006. Geochemistry of the 755 Ma Mundine Well Dyke Swarm, Northwestern Australia: Part of a Neoproterozoic Mantle Superplume Beneath Rodinia?. Precambrian Research, 146(1/2): 1–15.  https://doi.org/10.1016/j.precamres.2005.12.007 CrossRefGoogle Scholar
  26. Liang, Y., S., Chung, D., Liu, Y., et al., 2008. Detrital Zircon Evidence from Burma for Reorganization of the Eastern Himalayan River System. American Journal of Science, 308(4): 618–638.  https://doi.org/10.2475/04.2008.08 CrossRefGoogle Scholar
  27. Lin, I. J., Chung, S. L., Chu, C. H., et al., 2012. Geochemical and Sr-Nd Isotopic Characteristics of Cretaceous to Paleocene Granitoids and Volcanic rocks, SE Tibet: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 53(7): 131–150.  https://doi.org/10.1016/j.jseaes.2012.03.010 CrossRefGoogle Scholar
  28. Liu, Y., Hu, Z., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1–2): 34–43.  https://doi.org/10.1016/j.chemgeo.2008.08.004 Google Scholar
  29. Liu, Y., Liu, H. C., Li X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6): 552–558 (in Chinese with English Abstract)Google Scholar
  30. López-Escobar, L., Killian, R., Kempton, P., et al., 1993. Petrography and Geochemistry of Quaternary Rocks from the Southern Volcanic Zone between 41°30′ and 46°00′S, Chile. Andean Geology, 20(1): 33–55.  https://doi.org/10.5027/andgeoV20n1-a04 Google Scholar
  31. Ludwig, K. R., 2003. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Geochronology Center Special Publication, Berkeley. 4: 37Google Scholar
  32. Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349–357.  https://doi.org/10.1016/0012-821X(78)90021-3 CrossRefGoogle Scholar
  33. Ma, X., Xu, Z., Chen, X., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265–282.  https://doi.org/10.1007/s12583-016-0925-8 CrossRefGoogle Scholar
  34. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 CrossRefGoogle Scholar
  35. Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24.  https://doi.org/10.1016/j.lithos.2004.04.048 CrossRefGoogle Scholar
  36. Maurin, T., Masson, F., Rangin, C., et al., 2010. First Global Positioning System Results in Northern Myanmar: Constant and Localized Slip Rate along the Sagaing Fault. Geology, 38(7): 591–594.  https://doi.org/10.1130/G30872.1 CrossRefGoogle Scholar
  37. Mcdonough, W. F., 1991. Partial Melting of Subducted Oceanic Crust and Isolation of Its Residual Eclogitic Lithology. Philosophical Transactions of the Royal Soceity, 335(1638): 407–418.  https://doi.org/10.1098/rsta.1991.0055 Google Scholar
  38. Metcalfe, I., 1988. Origin and Assembly of South-East Asian Continental Terranes. Geological Society, London, Special Publications, 37: 101–118.  https://doi.org/10.1144/GSL.SP.1988.037.01.08 CrossRefGoogle Scholar
  39. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33.  https://doi.org/10.1016/j.jseaes.2012.12.020 CrossRefGoogle Scholar
  40. Middlemost, E. A., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  41. Mitchell, A. H. G., 1977. Tectonic Settings for Emplacement of Southeast Asian Tin Granites. Bulletin of the Geological Society of Malaysia, 9: 123–140Google Scholar
  42. Mitchell, A. H. G., 1992. Late Permian-Mesozoic Events and the Mergui Group Nappe in Myanmar and Thailand. Journal of Southeast Asian Earth Sciences, 7(2/3): 165–178.  https://doi.org/10.1016/0743-9547(92)90051-C CrossRefGoogle Scholar
  43. Mitchell, A. H. G., Htay, M. T., Htun, K. M., et al., 2007. Rock Relationships in the Mogok Metamorphic Belt, Tatkon to Mandalay, Central Myanmar. Journal of Asian Earth Sciences, 29(5): 891–910.  https://doi.org/10.1016/j.jseaes.2006.05.009 CrossRefGoogle Scholar
  44. Mitchell, A., 1993. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 150(6): 1089–1102.  https://doi.org/10.1144/gsjgs.150.6.1089 CrossRefGoogle Scholar
  45. Mitchell, A., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean?. Journal of Asian Earth Sciences, 56(3): 1–23.  https://doi.org/10.1016/j.jseaes.2012.04.019 CrossRefGoogle Scholar
  46. Mo, X. X., Deng, J., Lu, F., 1994. Volcanism and the Evolution of Tethys in Sanjiang Area, Southwestern China. Journal of Southeast Asian Earth Sciences, 9(4): 325–333.  https://doi.org/10.1016/0743-9547(94)90043-4 CrossRefGoogle Scholar
  47. Peacock, S. M., 1993. Large-Scale Hydration of the Lithosphere above Subducting Slabs. Chemical Geology, 108(12/3/4): 49–59.  https://doi.org/10.1016/0009-2541(93)90317-C Google Scholar
  48. Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1/2): 227–244.  https://doi.org/10.1016/0012-821X(94)90042-6 CrossRefGoogle Scholar
  49. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983.  https://doi.org/10.1093/petrology/25.4.956 CrossRefGoogle Scholar
  50. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.  https://doi.org/10.1007/BF00384745 CrossRefGoogle Scholar
  51. Prosanta, K. K., Shamim, S., Manoranjan, M., et al., 2017. Myanmar-Andaman-Sumatra Subduction Margin Revisited: Insights of Arc-Specific Deformations. Journal of Earth Science, 28(4): 1–12.  https://doi.org/10.1007/s12583-017-0752-6 Google Scholar
  52. Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931.  https://doi.org/10.1093/petrology/36.4.891 CrossRefGoogle Scholar
  53. Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576.  https://doi.org/10.2113/gsecongeo.102.4.537 CrossRefGoogle Scholar
  54. Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group, London. 1–352Google Scholar
  55. Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293: 683–687.  https://doi.org/10.1126/science.1061372 CrossRefGoogle Scholar
  56. Schmidt, M. W., Poli, S., 1998. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters, 163: 361–379.  https://doi.org/10.1016/S0012-821X(98)00142-3 CrossRefGoogle Scholar
  57. Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3): 623–626.  https://doi.org/10.1029/2006TC002083 Google Scholar
  58. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/GSL.SP.1989.042.01.19 CrossRefGoogle Scholar
  59. Tu, X. L., Hong Z., Deng, W. F., et al., 2011. Application of Resolution in-situ Laser Ablation ICP-MS in Trace Element Analyses. Geochimica, 40(1): 308–313.  https://doi.org/10.19700/j.0379-1726.2011.01.009 (in Chinese with English Abstract)Google Scholar
  60. Ulmer, P., 2001. Partial Melting in the Mantle Wedge—The Role of H2O in the Genesis of Mantle-Derived ‘Arc-Related’ Magmas. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 215–32.  https://doi.org/10.1016/S0031-9201(01)00229-1 Google Scholar
  61. Waltham, T., 2010. The Ruby Mines of Mogok. Geology Today, 15(4): 143–149.  https://doi.org/10.1046/j.1365-2451.1999.1504007.x CrossRefGoogle Scholar
  62. Wang, H., Lin, F. C., Li, X. Z., et al., 2012, Tectonic Unit Division and Neo-Tethys Tectonic Evolution in North-Central Myanmar and Its Adjacent Areas. Geology in China, 39(4): 912–922 (in Chinese with English Abstract)Google Scholar
  63. Wang, J. G., Wu, F. Y., Tan, X. C., et al., 2014. Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon. Tectonophysics, 612-613(3): 97–105.  https://doi.org/10.1016/j.tecto.2013.11.039 CrossRefGoogle Scholar
  64. Wen, D. R., Liu, D., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4): 191–201.  https://doi.org/10.1016/j.chemgeo.2008.03.003 CrossRefGoogle Scholar
  65. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analysis. Geostandards and Geoanalytical Research, 19(1): 1–23.  https://doi.org/10.1111/j.1751-908X.1995.tb00147.x CrossRefGoogle Scholar
  66. Wörner, G., Moorbath, S., Harmon, R. S., 1992. Andean Cenozoic Volcanic Centers Reflect Basement Isotopic Domains. Geology, 20(12): 1103–1106.  https://doi.org/10.1130/0091-7613(1992)020<1103:ACVCRB>2.3.CO;2 CrossRefGoogle Scholar
  67. Xu, Y. G., Yang, Q. J., Lan, J. B., et al., 2012. Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 53: 151–175.  https://doi.org/10.1016/j.jseaes.2011.06.018 CrossRefGoogle Scholar
  68. Yang, Q. J., Xu, Y. G., Huang, X. L., 2006. Geochronology and Geochemistry of Granites in the Gaoligong Tectonic Belt and Their Tectonic Implications. Acta Petrologica Sinica, 22(4): 817–834 (in Chinese with English Abstract)Google Scholar
  69. Yang, Y. H, Wu, F. Y, Xie, L. W., et al., 2011. High-Precision Measurements of the (143)Nd/(144)Nd Isotope Ratio in Certified Reference Materials without Nd and Sm Separation by Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 43(1): 142–150.  https://doi.org/10.1080/00032710903276539 CrossRefGoogle Scholar
  70. Yonemura, K., Osanai, Y., Nakano, N., et al., 2013. EPMA U-Th-Pb Monazite Dating of Metamorphic Rocks from the Mogok Metamorphic Belt, Central Myanmar. Journal of Mineralogical and Petrological Sciences, 108(3): 184–188.  https://doi.org/10.2465/jmps.121019a CrossRefGoogle Scholar
  71. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30.  https://doi.org/10.1016/j.gr.2013.10.010 CrossRefGoogle Scholar
  72. Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009a. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3/4): 298–312.  https://doi.org/10.1016/j.chemgeo.2009.09.008 CrossRefGoogle Scholar
  73. Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009b. Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D: Earth Sciences, 52(9): 1223–1239.  https://doi.org/10.1007/s11430-009-0132-x CrossRefGoogle Scholar
  74. Zhu, D. C., Zhao, Z. D., Niu, Y. L., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1–2): 241–255.  https://doi.org/10.1016/j.epsl.2010.11.005 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations