Advertisement

Journal of Earth Science

, Volume 29, Issue 4, pp 920–938 | Cite as

U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling

  • Xiaohu He
  • Hong Zhong
  • Zhifang Zhao
  • Shucheng Tan
  • Weiguang Zhu
  • Siqi Yang
  • Wenjun Hu
  • Zhong Tang
  • Congfa Bao
Article
  • 50 Downloads

Abstract

The Early Cretaceous Houyaoyu granite porphyries are located in the south margin of the North China Craton. Field observations, petrography, geochronology, major and trace elemental and Sr-Nd isotopic compositions are reported to elucidate the genesis of the Houyaoyu granite porphyries. SIMS zircon U-Pb analyses for the Houyaoyu granite porphyries yield two concordant ages of 133.2±2.3 (2σ) and 131±1.1 (2σ) Ma, respectively. Major and trace elemental compositions indicate that these porphyries are high-K I-type granites with high contents of SiO2, K2O, Rb, U, Pb, low Nb, Ta, Ti, and P. Initial 87Sr/86Sr ratios range from 0.708 3 to 0.709 7, and εNd(t) values range from -9.13 to -12.3, with corresponding two-stage depleted-mantle Nd model ages (T2DM) varying from 1.57 to 1.91 Ga. This suggests that the Houyaoyu granite porphyries were predominantly derived from ancient lower continental crust, with minor involvement of mantle-derived components. On the basis of the tectonic evolution of the Qinling Orogen and geochemical characteristics of the Houyaoyu granite porphyries, it is proposed that they were formed in an extensional tectonic setting related to lithospheric destruction of the North China Craton, and produced Mo and Pb-Zn mineralization in East Qinling Orogen.

Key words

East Qinling granite porphyries ancient lower continental crust destruction of North China Craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was jointly supported by the National Key R&D Program of China (No. 2016YFC0600405) and the National Natural Foundation of China (Nos. 41425011, 41262004). The authors are grateful to Dr. Aimin Fang and his colleagues from Lushi Mining Co., Ltd for providing invaluable assistance during our field investigation, and also grateful to two anonymous reviewers and Dr. Jianbo Chen, Dr. Min Tang for their constructive reviews, which considerably improved the paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0788-2.

References Cited

  1. Atherton, M. P., Petford, N., 1993. Generation of Sodium–Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146. https://doi.org/10.1038/362144a0 CrossRefGoogle Scholar
  2. Bader, T., Franz, L., Ratschbacher, L., et al., 2013. The Heart of China Revisited: II Early Paleozoic (Ultra)High–Pressure and (Ultra)High–Temperature Metamorphic Qinling Orogenic Collage. Tectonics, 32(4): 922–947. https://doi.org/10.1002/tect.20056 Google Scholar
  3. Bao, Z. W., Wang, C. Y., Zhao, T. P., et al., 2014. Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 57: 132–153. https://doi.org/10.1016/j.oregeorev.2013.09.008 CrossRefGoogle Scholar
  4. Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626.  https://doi.org/10.1016/s0024-4937(98)00085-1 CrossRefGoogle Scholar
  5. Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622.  https://doi.org/10.1007/s00410-002-0364-7 CrossRefGoogle Scholar
  6. Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace–Element–Related Matrix Effect; SHRIMP, ID–TIMS, ELA–ICP–MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1/2): 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003 CrossRefGoogle Scholar
  7. Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, New York. 63–114Google Scholar
  8. Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013 CrossRefGoogle Scholar
  9. Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174Google Scholar
  10. Chappell, B. W., White, A. J. R., 1992. I–and S–Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26. https://doi.org/10.1017/s0263593300007720 Google Scholar
  11. Chen, Y. J., Li, C., Zhang, J., et al., 2000. Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and Their Implication to Genetic Mechanism and Type. Science in China Series D: Earth Sciences, 43(S1): 82–94. https://doi.org/10.1007/bf02911935 CrossRefGoogle Scholar
  12. Chen, Y. J., Sui, Y. H., Pirajno, F., 2003. Exclusive Evidences for CMF Model and a Case of Orogenic Silver Deposits: Isotope Geochemistry of the Tieluping Silver Deposit, East Qinling Orogeny. Acta Petrologica Sinica, 19(3): 551–568 (in Chinese with English Abstract)Google Scholar
  13. Chen, Y. J., Zhao, Y. C., 1997. Geochemical Characteristics and Evolution of REE in the Early Precambrian Sediments: Evidences from the Southern Margin of the North China Craton. Episodes, 20: 109–116Google Scholar
  14. Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2018. Zircon U–Pb Ages and Sr–Nd–Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science.  https://doi.org/10.1007/s12583-017-0906-6 Google Scholar
  15. Chiaradia, M., 2009. Adakite–Like Magmas from Fractional Crystallization and Melting–Assimilation of Mafic Lower Crust (Eocene Macuchi Arc, Western Cordillera, Ecuador). Chemical Geology, 265(3/4): 468–487. https://doi.org/10.1016/j.chemgeo.2009.05.014 CrossRefGoogle Scholar
  16. Cui, M. L., Zhang, B. L., Zhang, L. C., 2011. U–Pb Dating of Baddeleyite and Zircon from the Shizhaigou Diorite in the Southern Margin of North China Craton: Constrains on the Timing and Tectonic Setting of the Paleoproterozoic Xiong’er Group. Gondwana Research, 20(1): 184–193. https://doi.org/10.1016/j.gr.2011.01.010 CrossRefGoogle Scholar
  17. Dai, B. Z., Jiang, S. Y., Wang, X. L., 2009. Petrogenesis of the Granitic Porphyry Related to the Giant Molybdenum Deposit in Donggou, Henan Province, China: Constraints from Petrogeochemistry, Zircon U–Pb Chronology and Sr–Nd–Hf Isotopes. Acta Petrologica Sinica, 25: 2889–2901 (in Chinese with English Abstract)Google Scholar
  18. Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0 CrossRefGoogle Scholar
  19. Deng, J. F., Mo, X. X., Zhao, H. L., et al., 2004. A New Model for the Dynamic Evolution of Chinese Lithosphere: ‘Continental Roots–Plume Tectonics’. Earth–Science Reviews, 65(3/4): 223–275. https://doi.org/10.1016/j.earscirev.2003.08.001 CrossRefGoogle Scholar
  20. Deng, J. F., Su, S. G., Niu, Y. L., et al., 2007. A Possible Model for the Lithospheric Thinning of North China Craton: Evidence from the Yanshanian (Jura–Cretaceous) Magmatism and Tectonism. Lithos, 96(1/2): 22–35. https://doi.org/10.1016/j.lithos.2006.09.009 CrossRefGoogle Scholar
  21. DePaolo, D. J., Linn, A. M., Schubert, G., 1991. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm–Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2): 2071–2088. https://doi.org/10.1029/90jb02219 CrossRefGoogle Scholar
  22. Dessimoz, M., Müntener, O., Ulmer, P., 2012. A Case for Hornblende Dominated Fractionation of Arc Magmas: The Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 163(4): 567–589.  https://doi.org/10.1007/s00410-011-0685-5 CrossRefGoogle Scholar
  23. Ding, L. X., Ma, C. Q., Li, J. W., et al., 2010. LA–ICPMS Zircon U–Pb Ages of the Lantian and Muhuguan Granitoid Plutons, Southern Margin of the North China Craton: Implications for Tectonic Setting. Geochimica, 39(5): 401–413 (in Chinese with English Abstract)Google Scholar
  24. Diwu, C. R., Sun, Y., Liu, X. M., Wang, H. L., 2007. Zircon U–Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, 23: 253–262 (in Chinese with English Abstract)Google Scholar
  25. Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002 CrossRefGoogle Scholar
  26. Dong, Y. P., Liu, X. M., Zhang, G. W., et al., 2012. Triassic Diorites and Granitoids in the Foping Area: Constraints on the Conversion from Subduction to Collision in the Qinling Orogen, China. Journal of Asian Earth Sciences, 47: 123–142. https://doi.org/10.1016/j.jseaes.2011.06.005 CrossRefGoogle Scholar
  27. Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  28. Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re–Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307–322.  https://doi.org/10.1016/s0012-821x(02)00489-2 CrossRefGoogle Scholar
  29. Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162 CrossRefGoogle Scholar
  30. Gao, X. Y., Zhao, T. P., Bao, Z. W., et al., 2014. Petrogenesis of the Early Cretaceous Intermediate and Felsic Intrusions at the Southern Margin of the North China Craton: Implications for Crust–Mantle Interaction. Lithos, 206/207: 65–78. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  31. Gao, Y. L., Zhang, J. M., Ye, Y. S., et al., 2010. Geological Characteristics and Molybdenite Re–Os Isotopic Dating of Shiyaogou Porphyry Molybdenum Deposit in the East Qinling. Acta Petrologica Sinica, 26(3): 729–739 (in Chinese with English Abstract)Google Scholar
  32. Ghosh, S. C., Nandi, A., Ahmed, G., et al., 1996. Study of Permo–Triassic Boundary in Gondwana Sequence of Raniganj Basin. In: Proceedings IXth international Gondwana Symposium. Oxford and IBH Publisher, New Delhi. 195–206Google Scholar
  33. Goldfarb, R. J., Hart, C., Davis, G., et al., 2007. East Asian Gold: Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons. Economic Geology, 102(3): 341–345. https://doi.org/10.2113/gsecongeo.102.3.341 CrossRefGoogle Scholar
  34. Griffin, W. L., Zhang, A., O’ Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino–Korean Craton. In: Flower, M. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union Geodynamics Series 27, Washington, D.C. 107–126Google Scholar
  35. Guo, B., Zhu, L. M., Li, B., et al., 2009. Zircon U–Pb Age and Hf Isotope Composition of the Huashan and Heyu Granite Plutons at the Southern Margin of North China Craton: Implications for Geodynamic Setting. Acta Petrologica Sinica, 25: 265–281 (in Chinese with English Abstract)Google Scholar
  36. Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6): 535.CrossRefGoogle Scholar
  37. Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062 CrossRefGoogle Scholar
  38. He, X. H., Zhong, H., Zhu, W. G., et al., 2014. Enrichment of Platinum–Group Elements (PGE) and Re–Os Isotopic Tracing for Porphyry Copper (Gold) Deposits. Acta Geologica Sinica: English Edition, 88(4): 1288–1309.  https://doi.org/10.1111/1755-6724.12289 CrossRefGoogle Scholar
  39. He, Y. H., Zhao, G. C., Sun, M., et al., 2010. Petrogenesis and Tectonic Setting of Volcanic Rocks in the Xiaoshan and Waifangshan Areas along the Southern Margin of the North China Craton: Constraints from Bulk–Rock Geochemistry and Sr–Nd Isotopic Composition. Lithos, 114(1/2): 186–199. https://doi.org/10.1016/j.lithos.2009.08.008 CrossRefGoogle Scholar
  40. Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid–Miocene East–West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139–155.  https://doi.org/10.1016/s0012-821x(04)00007-x CrossRefGoogle Scholar
  41. Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribution of Mantle Components within Juvenile Lower–Crust to Collisional Zone Porphyry Cu Systems in Tibet. Mineralium Deposita, 48(2): 173–192.  https://doi.org/10.1007/s00126-012-0415-6 CrossRefGoogle Scholar
  42. Hu, H., Li, J. W., Deng, X. D., 2010. LA–ICP–MS Zircon U–Pb Dating of Granitoid Intrusions Related to Iron–Copper Polymetallic Deposits in Luonan–Lushi Area of Southern North China Craton and Its Geological Implications. Mineral Deposits, 30: 979–1001 (in Chinese with English Abstract)Google Scholar
  43. Hu, S. X., Lin, Q. L., 1988. Geology and Mineralization in Convergence Belt between North China Craton and South China Block. Nanjing University Press, Nanjing. 1–277Google Scholar
  44. Huang, F., Li, S. G., Dong, F., et al., 2008. High–Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13. https://doi.org/10.1016/j.chemgeo.2008.02.014 CrossRefGoogle Scholar
  45. Jacobsen, S. B., Wasserburg, G. J., 1979. Nd and Sr Isotopic Study of the Bay of Islands Ophiolite Complex and the Evolution of the Source of Midocean Ridge Basalts. Journal of Geophysical Research: Solid Earth, 84(B13): 7429–7445. https://doi.org/10.1029/jb084ib13p07429 CrossRefGoogle Scholar
  46. Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177–189.  https://doi.org/10.1016/0040-1951(93)90295-u CrossRefGoogle Scholar
  47. Li, C. Y., Wang, F. Y., Hao, X. L., et al., 2012. Formation of the World’s Largest Molybdenum Metallogenic Belt: A Plate–Tectonic Perspective on the Qinling Molybdenum Deposits. International Geology Review, 54(9): 1093–1112. https://doi.org/10.1080/00206814.2011.623039 CrossRefGoogle Scholar
  48. Li, D., Zhang, S. T., Yan, C. H., et al., 2012. Late Mesozoic Time Constraints on Tectonic Changes of the Luanchuan Mo Belt, East Qinling Orogen, Central China. Journal of Geodynamics, 61: 94–104. https://doi.org/10.1016/j.jog.2012.02.005 CrossRefGoogle Scholar
  49. Li, H. Y., Wang, X. X., Ye, H. S., et al., 2012. Emplacement Ages and Petrogenesis of the Molybdenum–Bearing Granites in the Jinduicheng Area of East Qinling, China: Constraints from Zircon U–Pb Ages and Hf Isotopes. Acta Geologica Sinica–English Edition, 86(3): 661–679.  https://doi.org/10.1111/j.1755-6724.2012.00694.x CrossRefGoogle Scholar
  50. Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U–Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383–409.  https://doi.org/10.1007/s00410-008-0341-x CrossRefGoogle Scholar
  51. Li, N., Chen, Y. J., Pirajno, F., et al., 2012. LA–ICP–MS Zircon U–Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono–Magmatic Evolution. Lithos, 142/143: 34–47. https://doi.org/10.1016/j.lithos.2012.02.013 CrossRefGoogle Scholar
  52. Li, N., Chen, Y. J., Zhang, H., et al., 2007. Molybdenum Deposits in East Qinling. Earth Science Frontiers, 14: 186–198 (in Chinese with English Abstract)Google Scholar
  53. Li, N., Chen, Y. J., Santosh, M., et al., 2015a. Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China: Implication for Termination of the Northernmost Paleo–Tethys. Gondwana Research, 27(1): 244–257. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  54. Li, N., Chen, Y. J., McNaughton, N. J., et al., 2015b. Formation and Tectonic Evolution of the Khondalite Series at the Southern Margin of the North China Craton: Geochronological Constraints from a 1.85–Ga Mo Deposit in the Xiong’ershan Area. Precambrian Research, 269: 1–17. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  55. Li, Q. L., Li, X. H., Liu, Y., et al., 2010. Precise U–Pb and Pb–Pb Dating of Phanerozoic Baddeleyite by SIMS with Oxygen Flooding Technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107. https://doi.org/10.1039/b923444f CrossRefGoogle Scholar
  56. Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite–Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89–111.  https://doi.org/10.1016/0009-2541(93)90063-o CrossRefGoogle Scholar
  57. Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009gc002400 CrossRefGoogle Scholar
  58. Li, Y. F., Mao, J. W., Guo, B. J., et al., 2004. Re–Os Dating of Molybdenite from the Nannihu Mo(–W) Orefield in the East Qinling and Its Geodynamic Significance. Acta Geologica Sinica: English Edition, 78(2): 463–470.  https://doi.org/10.1111/j.1755-6724.2004.tb00155.x Google Scholar
  59. Lin, W., Faure, M., Monié, P., et al., 2008. Mesozoic Extensional Tectonics in Eastern Asia: The South Liaodong Peninsula Metamorphic Core Complex (NE China). The Journal of Geology, 116(2): 134–154. https://doi.org/10.1086/527456 CrossRefGoogle Scholar
  60. Liu, J. L., Davis, G. A., Lin, Z. Y., et al., 2005. The Liaonan Metamorphic Core Complex, Southeastern Liaoning Province, North China: A Likely Contributor to Cretaceous Rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics, 407(1/2): 65–80. https://doi.org/10.1016/j.tecto.2005.07.001 CrossRefGoogle Scholar
  61. Liu, S. W., Yang, P. T., Li, Q. G., et al., 2011. Indosinian Granitoids and Orogenic Processes in the Middle Segment of the Qinling Orogen: China. Journal of Jilin University (Earth Science Edition), 41: 1928–1943 (in Chinese with English Abstract)Google Scholar
  62. Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468Google Scholar
  63. Lu, J. S., Wang, G. D., Wang, H., et al., 2015. Zircon SIMS U–Pb Geochronology of the Lushan Terrane: Dating Metamorphism of the Southwestern Terminal of the Palaeoproterozoic Trans–North China Orogen. Geological Magazine, 152(2): 367–377. https://doi.org/10.1017/s0016756814000430 CrossRefGoogle Scholar
  64. Lu, X. X., 1998. Revealing the Process of Orogenic Evolution from Granites in the Qinling—Research Progress of the Qinling Granite. Advances in Earth Sciences, 13(2): 213–214 (in Chinese)Google Scholar
  65. Ludwig, K. R., 2001. User–Manual for Isoplot/Ex Revsion 2.49. Berkeley Geochronology Centre, Special Publication, Berkeley. 4Google Scholar
  66. Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3/4): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034 CrossRefGoogle Scholar
  67. Mao, J. W., Pirajno, F., Xiang, J. F., et al., 2011. Mesozoic Molybdenum Deposits in the East Qinling–Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geology Reviews, 43(1): 264–293. https://doi.org/10.1016/j.oregeorev.2011.07.009 CrossRefGoogle Scholar
  68. Mao, J. W., Xie, G. Q., Pirajno, F., et al., 2010. Late Jurassic–Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central–Eastern China: SHRIMP Zircon U–Pb Ages and Tectonic Implications. Australian Journal of Earth Sciences, 57(1): 51–78. https://doi.org/10.1080/08120090903416203 CrossRefGoogle Scholar
  69. Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite–Trondhjemite–Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048 CrossRefGoogle Scholar
  70. Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 6(1): 121–142.  https://doi.org/10.1111/j.1440-1738.1997.tb00043.x CrossRefGoogle Scholar
  71. Meng, Q. R., Zhang, G. W., 1999. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 27(2): 123.  https://doi.org/10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2 CrossRefGoogle Scholar
  72. Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196.  https://doi.org/10.1016/s0040-1951(00)00106-2 CrossRefGoogle Scholar
  73. Menzies, M. A., Xu, Y. G., 1998. Geodynamics of the North Chinacraton. In: Flower, M. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union Geodynamics Series 27, Washington, D.C. 115–165Google Scholar
  74. Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London. 1–266Google Scholar
  75. Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth–Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  76. Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society, 152(4): 689–701. https://doi.org/10.1144/gsjgs.152.4.0689 CrossRefGoogle Scholar
  77. Ni, Z. Y., Zhang, H., Xue, L. W., 2009. Pb–Sr–Nd Isotope Constraints on the Source of Ore–Forming Elements of the Dahu Au–Mo Deposit, Henan Province. Acta Petrologica Sinica, 25(11): 2823–2832 (in Chinese with English Abstract)Google Scholar
  78. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc–Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745 CrossRefGoogle Scholar
  79. Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513.  https://doi.org/10.1016/s0039-9140(99)00318-5 CrossRefGoogle Scholar
  80. Qi, Q. J., Wang, X. X., Ke, C. H., et al., 2012. Geochronology and Origin of the Laoniushan Complex in the Southern Margin of North China Craton and Their Implications: New Evidences from Zircon Dating, Hf Isotopes and Geochemistry. Acta Petrologica Sinica, 28: 279–301 (in Chinese with English Abstract)Google Scholar
  81. Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite–Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537 CrossRefGoogle Scholar
  82. Shi, Q. Z., Qin, G. Q., Li, M. L., et al., 1993. Detachment Extensional Structure and Gold Mineralization of the Post–Orogenic Stage in the West Henan Province. Henan Geology, 11: 27–36 (in Chinese with English Abstract)Google Scholar
  83. Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 CrossRefGoogle Scholar
  84. Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two–Stage Model. Earth and Planetary Science Letters, 26(2): 207–221.  https://doi.org/10.1016/0012-821x(75)90088-6 CrossRefGoogle Scholar
  85. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  86. Wang, J. P., Liu, Z. J., Liu, J. J., et al., 2018. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 29(3): 564–572.  https://doi.org/10.1007/s12583-017-0751-7 CrossRefGoogle Scholar
  87. Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008 CrossRefGoogle Scholar
  88. Wang, X. S., Hu, R. Z., Bi, X. W., et al., 2014. Petrogenesis of Late Cretaceous I–Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 208/209: 202–219. https://doi.org/10.13039/501100005231 CrossRefGoogle Scholar
  89. Wang, X. X., Wang, T., Qi, Q. J., et al., 2011. Temporal–Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China. Acta Petrologica Sinica, 27(6): 1573–1593 (in Chinese with English Abstract)Google Scholar
  90. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U–Th–Pb, Lu–Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23.  https://doi.org/10.1111/j.1751-908x.1995.tb00147.x CrossRefGoogle Scholar
  91. Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019 CrossRefGoogle Scholar
  92. Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and its Constraints on Interpretation of U–Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122 CrossRefGoogle Scholar
  93. Wu, Y. B., Zheng, Y. F., 2013a. Southward Accretion of the North China Block and the Tectonic Evolution of the Qinling–Tongbai–Hong’an Orogenic Belt. Chinese Science Bulletin, 58: 2246–2250Google Scholar
  94. Wu, Y. B., Zheng, Y. F., 2013b. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.13039/501100002855 CrossRefGoogle Scholar
  95. Xiao, E., Hu, J., Zhang, Z. Z., et al., 2012. Petrogeochemistry, Zircon U–Pb Dating and Lu–Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen. Acta Petrologica Sinica, 25: 4031–4046 (in Chinese with English Abstract)Google Scholar
  96. Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30–42.  https://doi.org/10.1007/s12583-017-0805-x CrossRefGoogle Scholar
  97. Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore–Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339–353 (in Chinese with English Abstract)Google Scholar
  98. Xu, X. S., Griffin, W. L., Ma, X., et al., 2009. The Taihua Group on the Southern Margin of the North China Craton: Further Insights from U–Pb Ages and Hf Isotope Compositions of Zircons. Mineralogy and Petrology, 97(1/2): 43–59.  https://doi.org/10.1007/s00710-009-0062-5 CrossRefGoogle Scholar
  99. Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2007. Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 119(11/12): 1405–1414. https://doi.org/10.1130/b26085.1 CrossRefGoogle Scholar
  100. Ye, H. S., Mao, J. W., Li, Y. F., et al., 2008a. SHRIMP Zircon U–Pb and Molybdenite Re–Os Datings of the Superlarge Donggou Porphyry Molybdenum Deposit in the East Qinling, China, and Its Geological Implications. Acta Geologica Sinica: English Edition, 82(1): 134–145.  https://doi.org/10.1111/j.1755-6724.2008.tb00332.x Google Scholar
  101. Ye, H. S., Mao, J. W., Xu, L. G., et al., 2008b. SHRIMP Zircon U–Pb Dating and Geochemistry of the Taishanmiao Aluminous A–type Granite in Western Henan Province. Geological Review, 54: 699–711 (in Chinese with English Abstract)Google Scholar
  102. Ye, H. S., Mao, J. W., Li, Y. F., et al., 2006. Characteristics and Metallogenic Mechanism of Mo–W and Pb–Zn–Ag Deposits in Nannihu Orefield, Western Henan Province. Geoscience, 20: 165–174 (in Chinese with English Abstract)Google Scholar
  103. Yogodzinski, G. M., Kelemen, P. B., 1998. Slab Melting in the Aleutians: Implications of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt. Earth and Planetary Science Letters, 158(1/2): 53–65.  https://doi.org/10.1016/s0012-821x(98)00041-7 CrossRefGoogle Scholar
  104. Yuan, C., Zhou, M. F., Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3/4): 481–492. https://doi.org/10.1016/j.epsl.2010.01.005 CrossRefGoogle Scholar
  105. Zeng, L. J., Zhou, D., Xing, Y. C., et al., 2013a. Geochemistry and Petrogenesis of the Babaoshan Granite Porphyry in Lushi County, Henan Province. Geochimica, 42: 242–261 (in Chinese with English Abstract)Google Scholar
  106. Zeng, L. J., Xing, Y. C., Zhou, D., et al., 2013b. LA–ICP–MS Zircon U–Pb Age and Hf Isotope Composition of the Babaoshan Granite Porphyries in Lushi County, Henan Province. Geotectonica et Metallogenia, 37(1): 65–77 (in Chinese with English Abstract)Google Scholar
  107. Zhai, M. G., Zhu, R. X., Liu, J. M., et al., 2003. Key Timing of Mesozoic Tectonic Regime Transform in Eastern North China. Science in China (Ser. D), 33(10): 913–920 (in Chinese with English Abstract)Google Scholar
  108. Zhai, M. G., Meng, Q. R., Liu, J. M., et al., 2004. Geological features of Mesozoic Tectonic Regime Inversion in Eastern North China and Implication for Geodynamics. Earth Science Frontiers, 11(3): 285–298 (in Chinese with English Abstract)Google Scholar
  109. Zhai, M. G., 2004. Adakite and Related Granitoids from Partial Melting of Continental Lower Crust. Acta Petrologica Sinica, 20(2): 193–194Google Scholar
  110. Zhang, G. W., Dong, Y. P., Yao, A. P., 1997. The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt. Geology of Shanxi, 15: 1–14 (in Chinese with English Abstract)Google Scholar
  111. Zhang, G. W., Meng, Q. R., Yu, Z. P., et al., 1996. Orogenesis and Dynamics of the Qinling Orogen. Chinese Science Bulletin, 39: 225–234Google Scholar
  112. Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese)Google Scholar
  113. Zhang, Z. Q., Li, S. M., 1998. Sm–Nd, Rb–Sr Age and Its Geological Significance of Archean Taihua Group in Xiongershan, West Henan Province, Contributions of Early Precambrian Geology in North China Craton. Geological Publishing House, Beiijng. 123–132 (in Chinese with English Abstract)Google Scholar
  114. Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Chronology and Geochemistry of Ophiolite, Granite, and Clastic Sedimentary Rocks in Qinling Orogen. Geological Press, Beijing (in Chinese)Google Scholar
  115. Zhang, J. J., Zheng, Y. D., Liu, S. W., 2003. Mesozoic Tectonic Evolution and Ore–Deposits Formation in the Gold Mine Field of Xiaoqinling. Chinese Journal of Geology, 38(1): 74–84 (in Chinese with English Abstract)Google Scholar
  116. Zhang, Z. W., Yang, X. Y., Dong, Y., et al., 2011. Molybdenum Deposits in the Eastern Qinling, Central China: Constraints on the Geodynamics. International Geology Review, 53(2): 261–290. https://doi.org/10.1080/00206810903053902 CrossRefGoogle Scholar
  117. Zhang, Z. W., Zhang, Z. S., Dong, Y., et al., 2007. Molybdenum Deposits in Eastern Qinling, Central China: Deep Structural Constraints on Their Reformation. Acta Mineralogical Sinica, 27: 372–378 (in Chinese with English Abstract)Google Scholar
  118. Zhang, Z. W., Zhu, B. Q., Chang, X. Y., et al., 2001. Petrogenetic–Metallogenetic Background and Time–Space Relationship of the East Qinling Molybdenum Ore Belt, China. Geological Journal of China Universities, 7: 307–315 (in Chinese with English Abstract)Google Scholar
  119. Zhao, H. X., Jiang, S. Y., Frimmel, H. E., et al., 2012. Geochemistry, Geochronology and Sr–Nd–Hf Isotopes of Two Mesozoic Granitoids in the Xiaoqinling Gold District: Implication for Large–Scale Lithospheric Thinning in the North China Craton. Chemical Geology, 294/295: 173–189. https://doi.org/10.1016/j.chemgeo.2011.11.030 CrossRefGoogle Scholar
  120. Zhao, Z. F., Zheng, Y. F., Dai, L. Q., 2013. Origin of Residual Zircon and the Nature of Magma Source for Post Collisional Granite in Continental Collision Zone. Chinese Science Bulletin, 58: 2285–2289Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geology, School of Resource Environment and Earth ScienceYunnan UniversityKunmingChina
  2. 2.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Kunming University of Science and TechnologyKunmingChina
  5. 5.Institute of Yunnan Geology SurveyKunmingChina

Personalised recommendations