Advertisement

Journal of Earth Science

, Volume 29, Issue 3, pp 573–586 | Cite as

Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China

  • Wenhao Liu
  • Xiaojun ZhangEmail author
  • Jun Zhang
  • Manrong Jiang
Mineral Deposits

Abstract

This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=1.4), which is older than the published Late Triassic mineralization ages (230‒200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ34S values of 11.3‰‒15.2‰ with small variations. The large δ34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.

Key words

sphalerite Rb-Sr in situ sulfur isotope thermochemical reduction Daliangzi Mississippi Valley-type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was financially supported by the China Geological Survey (No. 12120114019701), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan). We greatly acknowledge two anonymous reviewers for their very detailed and constructive reviews to improve the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0785-5

References Cited

  1. Anderson, G. M., 1975. Precipitation of Mississippi Valley-Type Ores. Economic Geology, 70(5): 937–942. https://doi.org/10.2113/gsecongeo.70.5.937 CrossRefGoogle Scholar
  2. Anderson, G. M., Macqueen, R. W., 1982. Ore Deposit Models-6. Mississippi Valley-Type Lead-Zinc Deposits. Geoscience Canada, 9: 108–117Google Scholar
  3. Bendall, C., Lahaye, Y., Fiebig, J., et al., 2006. In Situ Sulfur Isotope Analysis by Laser Ablation MC-ICPMS. Applied Geochemistry, 21(5): 782–787. https://doi.org/10.1016/j.apgeochem.2006.02.012 CrossRefGoogle Scholar
  4. Brannon, J. C., Podosek, F. A., McLimans, R. K., 1992. Alleghenian Age of the Upper Mississippi Valley Zinc-Lead Deposit Determined by Rb-Sr Dating of Sphalerite. Nature, 356(6369): 509–511. https://doi.org/10.1038/356509a0 CrossRefGoogle Scholar
  5. Cheng, P. L., Xiong, W., Zhou, G., et al., 2015. A Preliminary Study on the Origins of Ore-Forming Fluids and Their Migration Directions for Pb-Zn Deposits in NW Guizhou Province, China. Acta Mineralogica Sinica, 35(4): 509–514 (in Chinese with English Abstract)Google Scholar
  6. Cheng, Y. Q., 1994. Concise Regional Geology of China. Geological Publishing House, Beijing. 313–384 (in Chinese)Google Scholar
  7. Christensen, J. N., Halliday, A. N., Leigh, K. E., et al., 1995. Direct Dating of Sulfides by Rb-Sr: A Critical Test Using the Polaris Mississippi Valley-Type Zn-Pb Deposit. Geochimica et Cosmochimica Acta, 59(24): 5191–5197. https://doi.org/10.1016/0016-7037(95)00345-2 CrossRefGoogle Scholar
  8. Cong, B. L., 1988. Formation and Evolution of Panxi Paleo-Rift. Science Press, Beijing (in Chinese)Google Scholar
  9. Dai, H. G., 1997. On the Strata, Structure and Prospecting Target Area of Kunyang Group and Huili Group in Kangdian Region. Yunnan Geology, 16(1): 1–39 (in Chinese with English Abstract)Google Scholar
  10. Faure, G., 1977. Principles of Isotope Geology. John Wiley & Sons, New York. 28–110Google Scholar
  11. Garven, G., Freeze, R. A., 1984a. Theoretical Analysis of the Role of Groundwater Flow in the Genesis of Stratabound Ore Deposits; 1, Mathematical and Numerical Model. American Journal of Science, 284(10): 1085–1124. https://doi.org/10.2475/ajs.284.10.1085 CrossRefGoogle Scholar
  12. Garven, G., Freeze, R. A., 1984b. Theoretical Analysis of the Role of Groundwater Flow in the Genesis of Stratabound Ore Deposits; 2, Quantitative Results. American Journal of Science, 284(10): 1125–1174. https://doi.org/10.2475/ajs.284.10.1125 CrossRefGoogle Scholar
  13. Han, R. S., Hu, Y. Z., Wang, X. K., et al., 2012. Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in Northeastern Yunnan, China. Acta Geologica Sinica, 86(2): 280–294 (in Chinese with English Abstract)Google Scholar
  14. Han, R.S., Zhou, H. J., Hu, B., et al.,2007a. Features of Fluid Inclusions and Sources of Ore-Forming Fluid in the Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China. Acta Petrologica Sinica, 23(9): 2109–2118Google Scholar
  15. Han, R. S., Liu, C. Q., Huang, Z. L., et al., 2007b. Geological Features and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 31(1/2/3/4): 360–383. https://doi.org/10.1016/j.oregeorev.2006.03.003 CrossRefGoogle Scholar
  16. Han, R. S., Liu, C. Q., Huang, Z. L., et al., 2001. Genesis Modeling of Huize Lead-Zinc Ore Deposit in Yunnan. Acta Mineralogica Sinica, 21(4): 674–680 (in Chinese with English Abstract)Google Scholar
  17. Hu, R. Z., Fu, S. L., Xiao, J. F., 2016. Major Scientific Problems on Low-Temperature Metallogenesis in South China. Acta Petrologica Sinica, 32(11): 3239–3251 (in Chinese with English Abstract)Google Scholar
  18. Huang, Z. L., Chen, J., Han, R. S., et al., 2004. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan, Province, China. Discussion on the Relationship between Emeishan Flood Basalts and Lead-Zinc Mineralization. Geological Publishing House, Beijing. 1–204 (in Chinese)Google Scholar
  19. Huang, Z. L., Chen, J., Liu, C. Q., et al., 2001. A Preliminary Discussion on the Genetic Relationship between Emeishan Basalts and Pb-Zn Deposits as Exemplified by the Huize Pb-Zn Deposit, Yunnan Province. Acta Mineralogica Sinica, 21(4): 681–688 (in Chinese with English Abstract)Google Scholar
  20. Jin, Z. G., 2006. Research on the Ore-Controlling Factors, Metallogenic Regularity and Prediction of Lead-Zinc Ore District in Northwest Guizhou: [Dissertation]. Central South University, Changsha. 10–100 (in Chinese)Google Scholar
  21. Jørgensen, B. B., Isaksen, M. F., Jannasch, H. W., 1992. Bacterial Sulfate Reduction above 100 C in Deep-Sea Hydrothermal Vent Sediments. Science, 258(5089): 1756–1757. https://doi.org/10.1126/science.258.5089.1756 CrossRefGoogle Scholar
  22. Leach, D. L., Bradley, D., Lewchuk, M. T., et al., 2001. Mississippi Valley-Type Lead-Zinc Deposits through Geological Time: Implications from Recent Age-Dating Research. Mineralium Deposita, 36(8): 711–740. https://doi.org/10.1007/s001260100208 CrossRefGoogle Scholar
  23. Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100: 561–608Google Scholar
  24. Lei, Y. L., Li, B. L., Chen, Z. X., et al, 2010. Tectonic Evolution on the Western Border Area of Upper Yangtze Plate. Petroleum Industry Press, Beijing. 40–71 (in Chinese)Google Scholar
  25. Li, F. H., Qin, J. M., 1988. Presinian System in Kangdian Area. Chongqing Press, Chongqing. 15–45 (in Chinese)Google Scholar
  26. Li, W. B., Huang, Z. L., Xu, D. R., et al., 2002. Rb-Sr Isotopic Method on Zinc-Lead Ore Deposits: A Review. Geotectonica et Metallogenia, 26: 436–441 (in Chinese with English Abstract)Google Scholar
  27. Li, W. B., Huang, Z. L., Yin, M. D., 2007. Dating of the Giant Huize Zn-Pb Ore Field of Yunnan Province, Southwest China: Constraints from the Sm-Nd System in Hydrothermal Calcite. Resource Geology, 57(1): 90–97. https://doi.org/10.1111/j.1751-3928.2006.00007.x CrossRefGoogle Scholar
  28. Li, Y. Y., 2003. Study on Occurrence State and Enrichment Mechanism of Dispersed Elements in MVT Deposits‒‒A Case Study for the Tianbaoshan and Daliangzi Pb-Zn Deposits in Sichuan Province: [Dissertation]. Chengdu University of Technology, Chengdu. 35–38 (in Chinese)Google Scholar
  29. Lin, F. C., 1994. Some Opinions on the Genesis of the Daliangzi Lead-Zinc Deposit, Huidong County, Sichuan Province. Mineral Deposits, 13(2): 126–136 (in Chinese with English Abstract)Google Scholar
  30. Lin, Z. Y., Wang, D. H., Zhang, C. Q., 2010. Rb-Sr Isotopic Age of Sphalerite from the Paoma Lead-Zinc Deposit in Sichuan Province and Its Implications. Geology in China, 37(2): 488–494 (in Chinese with English Abstract)Google Scholar
  31. Liu, H. C., 1995. Structural Control of Mineralization in Yunnan-Sichuan-Guizhou Lead-Zinc Metallogenic Province. Yunnan Geology, 14(3): 173–189 (in Chinese)Google Scholar
  32. Liu, H. C., Lin, W. D., 1999. Study on the Law of Pb-Zn-Ag Ore Deposits in Northeast Yunnan, China. Yunnan University Press, Kunming. 1–468 (in Chinese)Google Scholar
  33. Liu, W. H., Zhang, J., Wang, J., 2017. Sulfur Isotope Analysis of Carbonate-Hosted Zn-Pb Deposits in Northwestern Guizhou Province, Southwest China: Implications for the Source of Reduced Sulfur. Journal of Geochemical Exploration, 181: 31–44. https://doi.org/10.13039/501100004613 CrossRefGoogle Scholar
  34. Liu, Y. Y., Qi, L., Gao, J. F., et al., 2015. Re-Os Dating of Galena and Sphalerite from Lead-Zinc Sulfide Deposits in Yunnan Province, SW China. Journal of Earth Science, 26(3): 343–351. https://doi.org/10.1007/s12583-015-0539-6 CrossRefGoogle Scholar
  35. Ludwig, K. R., 2008. User’s Manual for Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1–74Google Scholar
  36. Luo, Z. L., Jin, Y. Z., Zhu, K. Y., et al., 1988. Discussion on Emei Taphrogenesis of the Upper Yangtze Platform. Geological Review, 34(1): 11–24 (in Chinese with English Abstract)Google Scholar
  37. Machel, H. G., Krouse, H. R., Sassen, R., 1995. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Applied Geochemistry, 10(4): 373–389. https://doi.org/10.1016/0883-2927(95)00008-8 CrossRefGoogle Scholar
  38. Nakai, S., Halliday, A. N., Kesler, S. E., et al., 1990. Rb-Sr Dating of Sphalerites from Tennessee and the Genesis of Mississippi Valley Type Ore Deposits. Nature, 346(6282): 354–357. https://doi.org/10.1038/346354a0 CrossRefGoogle Scholar
  39. Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes H. L., ed., Geochemistry of Hydrothermal Ore Deposits, 3rd Ed. J. Wiley and Sons, New York. 517‒611Google Scholar
  40. Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits, 2nd Ed. J. Wiley and Sons, New York. 509–567Google Scholar
  41. Oliver, J., 1986. Fluids Expelled Tectonically from Orogenic Belts: Their Role in Hydrocarbon Migration and Other Geologic Phenomena. Geology, 14(2): 99. https://doi.org/10.1130/0091-7613(1986)14<99:fetfob>2.0.co;2CrossRefGoogle Scholar
  42. Ostendorf, J., Henjes-Kunst, F., Mondillo, N., et al., 2015. Formation of Mississippi Valley-Type Deposits Linked to Hydrocarbon Generation in Extensional Tectonic Settings: Evidence from the Jabali Zn-Pb-(Ag) Deposit (Yemen). Geology, 43(12): 1055–1058. https://doi.org/10.1130/g37112.1 Google Scholar
  43. Peevler, J., Fayek, M., Misra, K. C., et al., 2003. Sulfur Isotope Microanalysis of Sphalerite by SIMS: Constraints on the Genesis of Mississippi Valley-Type Mineralization, from the Mascot-Jefferson City District, East Tennessee. Journal of Geochemical Exploration, 80(2/3): 277–296. https://doi.org/10.1016/s0375-6742(03)00195-x CrossRefGoogle Scholar
  44. Pfaff, K., Koenig, A., Wenzel, T., et al., 2011. Trace and Minor Element Variations and Sulfur Isotopes in Crystalline and Colloform ZnS: Incorporation Mechanisms and Implications for their Genesis. Chemical Geology, 286(3/4): 118–134. https://doi.org/10.1016/j.chemgeo.2011.04.018 Google Scholar
  45. Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. https://doi.org/10.2138/rmg.2006.61.12 CrossRefGoogle Scholar
  46. Sui, Z. L., Huang, C. X., Li, D. W., 2003. Study on the Fault-Karst Breccia of Gongcheng-Limu Fault Zone: A New Kind of Fault Rocks. Geological Science and Technology Information, 22(1): 24–28 (in Chinese with English Abstract)Google Scholar
  47. Thom, J., Anderson, G. M., 2008. The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-Type Deposits. I. Experimental Results. Geofluids, 8: 16–26. https://doi.org/10.1111/j.1468-8123.2007.00201.x Google Scholar
  48. Wang, J. Z., Li, C. Y., Li, Z. Q., et al., 2001. The Geological Setting, Characters and Origin of Mississippi Valley-Type Pb-Zn Deposits in Sichuan and Yunnan Provinces. Geology-Geochemistry, 29(2): 41–45 (in Chinese with English Abstract)Google Scholar
  49. Wang, X. C., 1988. Metallogenic Mechanism of the Strata bound Pb-Zn Deposits in the Upper Sinian Dengying Formation in the Eastern Kangdian Axis‒‒A Case Study of the Tianbaoshan and Daliangzi Deposits: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese)Google Scholar
  50. Wang, Z. J., 1980. Discussion on the Sedimentary Origin in Plaeokarst Cave of the Daliangzi and Tianbaoshan Pb-Zn Deposits. Acta Geologica Sichuan, 1: 117–125 (in Chinese)Google Scholar
  51. Wu, Y., 2013. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China: [Dissertation]. Chinese University of Geosciences, Beijing. 12–151 (in Chinese)Google Scholar
  52. Wu, Y., Zhang, C. Q., Mao, J. W., et al., 2013. The Genetic Relationship between Hydrocarbon Systems and Mississippi Valley-Type Zn-Pb Deposits along the SW Margin of Sichuan Basin, China. International Geology Review, 55(8): 941–957. https://doi.org/10.1080/00206814.2012.753177 CrossRefGoogle Scholar
  53. Xiong, W., Cheng, P. L., Zhou, G., et al., 2015. The Origin of Ore-Forming Metals in Northwestern Guizhou Pb-Zn Metallogenic District Con strained by Pb Isotopes. Acta Mineralogica Sinica, 35(4): 425–429 (in Chinese with English Abstract)Google Scholar
  54. Xiong, S. F., Yao, S. Z., Gong, Y. J., et al., 2016. Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China. Earth Science, 41(1): 105–120. https://doi.org/10.3799/dqkx.2016.008 (in Chinese with English Abstract)Google Scholar
  55. Xu, Y. K., Huang, Z. L., Zhu, D., et al., 2014. Origin of Hydrothermal Deposits Related to the Emeishan Magmatism. Ore Geology Reviews, 63: 1–8. https://doi.org/10.1016/j.oregeorev.2014.04.010 CrossRefGoogle Scholar
  56. Yang, H. M., Liu, C. P., Duan, R. C., et al., 2015. Rb-Sr and Sm-Nd Isochron Ages of Bokouchang Pb-Zn Deposit in Tongren, Guizhou Province and Their Geological Implication. Geotectonica et Metallogenia, 39(5): 855–865 (in Chinese with English Abstract)Google Scholar
  57. Yin, M. D., Li, W. B., Sun, X. W., 2009. Rb-Sr Isotopic Dating of Sphalerite from the Giant Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China. Chinese Journal of Geochemistry, 28(1): 70–75. https://doi.org/10.1007/s11631-009-0070-5 CrossRefGoogle Scholar
  58. Yuan, B., Mao, J. W., Yan, X. H., et al., 2014. Sources of Metallogenic Materials and Metallogenic Mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from Geochemistry of S, C, H, O, Sr Isotope and Trace Element in Sphalerite. Acta Petrologica Sinica, 30(1): 209–220 (in Chinese with English Abstract)Google Scholar
  59. Zhang, C. Q., 2008. The Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Province, China: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 1–177 (in Chinese)Google Scholar
  60. Zhang, C. Q., Wu, Y., Hou, L., et al., 2015. Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan-Yunnan-Guizhou Zn-Pb Triangle, Southwest China: Implications from Age-Dating Studies in the Past Decade and the Sm-Nd Age of Jinshachang Deposit. Journal of Asian Earth Sciences, 103: 103–114. https://doi.org/10.1016/j.jseaes.2014.08.013 CrossRefGoogle Scholar
  61. Zhang, C. Q., Li, X. H., Yu, J. J., et al., 2008. Rb-Sr Dating of Single Sphalerite from the Daliangzi Pb-Zn Deposit, Sichuan, and Its Geological Significances. Geological Review, 54(4): 532–538 (in Chinese with English Abstract)Google Scholar
  62. Zhang, T. G., Chu, X. L., Zhang, Q. R., et al., 2004. The Sulfur and Carbon isoTopic Records in Carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica, 20(3): 717–724 (in Chinese with English Abstract)Google Scholar
  63. Zhang, Y. X., Wu, Y., Tian, G., et al., 2014. Mineralization Age and the Source of Ore-Forming Material at Lehong Pb-Zn Deposit, Yunan Province: Constraints from Rb-Sr and S Isotopes System. Acta Mineralogica Sinica, 34(3): 305–311 (in Chinese with English Abstract)Google Scholar
  64. Zhang, Z. B., Li, C. Y., Tu, G. C., et al., 2006. Geotectonic Evolution Background and Ore-Forming Process of Pb-Zn Deposits in Chuan-Dian-Qian Area of Southwest China. Geotectonica et Metallogenia, 30(3): 343–354 (in Chinese with English Abstract)Google Scholar
  65. Zhang, Z. C., 1995. 87Sr/86Sr Data for Some Middle–Late Proterozoic to Early Cambrian Carbonate Rocks in China. Geological Review, 41(4): 349–354 (in Chinese with English Abstract)Google Scholar
  66. Zhang, Z. L., Huang, Z. L., Rao, B., et al., 2005a. Concentration Mechanism of Ore-Forming Fluid in Huize Lead-Zinc Deposits, Yunan Province. Earth Science––Journal of China University of Geosciences, 30(4): 443–450 (in Chinese with English Abstract)Google Scholar
  67. Zhang, Z. L., Huang, Z. L., Rao, B., et al., 2005b. Study of the Ore Forming Fluid Characteristics of Huize Pb-Zn Ore Deposits. Contributions to Geology and Mineral Resources Research, 20(2): 115–112 (in Chinese with English Abstract)Google Scholar
  68. Zheng, M. H., Wang, X. C., 1991. Ore Genesis of the Daliangzi Pb-Zn Deposit in Sichuan, China. Economic Geology, 86(4): 831–846. https://doi.org/10.2113/gsecongeo.86.4.831 CrossRefGoogle Scholar
  69. Zhou, C. X., Wei, C. S., Guo, J. Y., et al., 2001. The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints. Economic Geology, 96(3): 583–598. https://doi.org/10.2113/gsecongeo.96.3.583 CrossRefGoogle Scholar
  70. Zhou, J. X., Bai, J. H., Huang, Z. L., et al., 2015. Geology, Isotope Geochemistry and Geochronology of the Jinshachang Carbonate-Hosted Pb-Zn Deposit, Southwest China. Journal of Asian Earth Sciences, 98: 272–284. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  71. Zhou, J. X., Gao, J. G., Chen, D., et al., 2013a. Ore Genesis of the Tianbaoshan Carbonate-Hosted Pb-Zn Deposit, Southwest China: Geologic and Isotopic (C-H-O-S-Pb) Evidence. International Geology Review, 55(10): 1300–1310. https://doi.org/10.1080/00206814.2013.782973 CrossRefGoogle Scholar
  72. Zhou, J. X., Huang, Z. L., Yan, Z. F., 2013b. The Origin of the Maozu Carbonate-Hosted Pb-Zn Deposit, Southwest China: Constrained by C-O-S-Pb Isotopic Compositions and Sm-Nd Isotopic Age. Journal of Asian Earth Sciences, 73: 39–47. https://doi.org/10.1016/j.jseaes.2013.04.031 CrossRefGoogle Scholar
  73. Zhou, J. X., Huang, Z. L., Zhou, M. F., et al., 2013c. Constraints of C-O-S-Pb Isotope Compositions and Rb-Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb-Zn Deposit, SW China. Ore Geology Reviews, 53: 77–92. https://doi.org/10.1016/j.oregeorev.2013.01.001 CrossRefGoogle Scholar
  74. Zhou, J. X., Huang, Z. L., Bao, G. P., 2013d. Geological and Sulfur-Lead-Strontium Isotopic Studies of the Shaojiwan Pb-Zn Deposit, Southwest China: Implications for the Origin of Hydrothermal Fluids. Journal of Geochemical Exploration, 128: 51–61. https://doi.org/10.1016/j.gexplo.2013.01.007 CrossRefGoogle Scholar
  75. Zhou, J. X., Huang, Z. L., Gao, J. G., et al., 2013e. Geological and C-O-S-Pb-Sr Isotopic Constraints on the Origin of the Qingshan Carbonate-Hosted Pb–Zn Deposit, Southwest China. International Geology Review, 55(7): 904–916. https://doi.org/10.1080/00206814.2013.767496 CrossRefGoogle Scholar
  76. Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013f. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 24(5): 759–771. https://doi.org/10.1007/s12583-013-0372-8 CrossRefGoogle Scholar
  77. Zhou, J. X., Huang, Z. L., Lv, Z. C., et al., 2014. Geology, Isotope Geochemistry and Ore Genesis of the Shanshulin Carbonate-Hosted Pb-Zn Deposit, Southwest China. Ore Geology Reviews, 63: 209–225. https://doi.org/10.1016/j.oregeorev.2014.05.012 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Earth ResourcesChina University of GeosciencesWuhanChina
  2. 2.Institute of Geological SurveyChina University of GeosciencesWuhanChina

Personalised recommendations