Advertisement

Journal of Earth Science

, Volume 29, Issue 3, pp 479–491 | Cite as

Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations

  • Jingxun Zuo
  • Shanchi Peng
  • Yuping Qi
  • Xuejian Zhu
  • Gabriella Bagnoli
  • Huaibin Fang
Paleontology

Abstract

Cambrian carbonates with abundant fossils of agnostoid trilobites deposited on the southern slope (Jiangnan slope belt) of the Yangtze Platform and in the Jiangnan deepwater basin are well exposed in the Wangcun Section of western Hunan, South China, and in the Duibian A Section of western Zhejiang, southeastern China, respectively. To better understand the response of carbon-isotope excursions to depositional environment changes, mass extinctions and eustatic events, we collected 530 carbonate samples in fresh roadcut exposures of the two measured sections for analysis of carbon and oxygen isotopic compositions. Data of δ13C from the Wangcun Section, western Hunan, South China, demonstrate that the Cambrian carbon-isotope profile includes three remarkable positive excursions CPE wc -1, 2, 3 in the Upper Series 2, in the Lower and in the Middle Furongian Series. Three distinctive negative excursions CNE wc -1, 2, 3 were separately tested in the Lower Terreneuvian Series, Lower Series 3 and in the Upper Furongian Series. Similarly, in the corresponding horizons in the Duibian A Section, Zhejiang Province, southeastern China, three positive excursions CPE db -1, 2, 3 and three negative excursions CNE db -1, 2, 3 also have been discovered. We interpret these significant carbon-isotope excursions as being associated with enhanced biogenic productivity, mass extinctions and eustatic events.

Key words

carbon-isotope excursion mass extinction sea-level change Cambrian South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 41672028, 41672002, 41330101, 41221001). The authors would like to thank Prof. Laishi Zhao from the State Key Lab of Geological Process and Mineral Resources of China University of Geosciences, Wuhan, Hubei Province, China. Professor Xinggong Kong from the Laboratory of Stable Isotope Analysis of the Nanjing Normal University is acknowledged for the help in processing and analyzing the samples. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0963-x.

References Cited

  1. Álvaro, J. J., Vennin, E., 1998. Stratigraphic Signature of a Terminal Early Cambrian Regressive Event in the Iberian Peninsula. Canadian Journal of Earth Sciences, 35(4): 402–411. https://doi.org/10.1139/e97-093 CrossRefGoogle Scholar
  2. Babcock, L. E., Peng, S. C., Brett, C. E., et al., 2015. Global Climate, Sea Level Cycles, and Biotic Events in the Cambrian Period. Palaeoworld, 24(1/2): 5–15. https://doi.org/10.1016/j.palwor.2015.03.005 CrossRefGoogle Scholar
  3. Babcock, L. E., Robison, R. A., Rees, M. N., et al., 2007. The Global Boundary Stratotype Section and Point of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes, 30: 85–95Google Scholar
  4. Bagnoli, G., Peng, S. C., Qi, Y. P., et al., 2017. Conodonts from the Wa’ergang Section, China, a Potential GSSP for the Uppermost Stage of the Cambrian. Rivista Italiana di Paleontologia e Stratigrafia, 123(1): 1–10. https://doi.org/10.13130/2039-4942/8003 Google Scholar
  5. Bagnoli, G., Qi, Y. P., Zuo, J. X., et al., 2014. Integrated Biostratigraphy and Carbon Isotopes from the Cambrian Tangwangzhai Section, North China. Palaeoworld, 23(2): 112–124. https://doi.org/10.1016/j.palwor.2013.12.002 CrossRefGoogle Scholar
  6. Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123–3137. https://doi.org/10.1016/0016-7037(90)90128-8 CrossRefGoogle Scholar
  7. Brasier, M. D., Corfield, R. M., Derry, L. A., et al., 1994. Multiple δ13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia. Geology, 22(5): 455–458. https://doi.org/10.1130/0091-7613(1994)022<0455:mcestc>2.3.co;2CrossRefGoogle Scholar
  8. Brasier, M. D., Magaritz, M., Corfield, R., et al., 1990. The Carbon-and Oxygen-Isotope Record of the Precambrian–Cambrian Boundary Interval in China and Iran and Their Correlation. Geological Magazine, 127(4): 319. https://doi.org/10.1017/s0016756800014886 CrossRefGoogle Scholar
  9. Brasier, M. D., Sukhov, S. S., 1998. The Falling Amplitude of Carbon Isotopic Oscillations through the Lower to Middle Cambrian: Northern Siberia Data. Canadian Journal of Earth Sciences, 35(4): 353–373. https://doi.org/10.1139/e97-122 CrossRefGoogle Scholar
  10. Debrenne, F., 1991. Extinction of the Archaeocyatha. Historical Biology, 5(2/3/4): 95–106. https://doi.org/10.1080/10292389109380393 CrossRefGoogle Scholar
  11. Derry, L. A., Brasier, M. D., Corfield, R. M., et al., 1994. Sr and C Isotopes in Lower Cambrian Carbonates from the Siberian Craton: A Paleoenvironmental Record during the ‘Cambrian Explosion’. Earth and Planetary Science Letters, 128(3/4): 671–681. https://doi.org/10.1016/0012-821x(94)90178-3 CrossRefGoogle Scholar
  12. Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317–1329. https://doi.org/10.1016/0016-7037(92)90064-p CrossRefGoogle Scholar
  13. Dilliard, K. A., Pope, M. C., Coniglio, M., et al., 2007. Stable Isotope Geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for Ocean Chemistry and Secular Curve Generation. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 174–194. https://doi.org/10.1016/j.palaeo.2007.02.031 CrossRefGoogle Scholar
  14. Ebneth, S., Shields, G. A., Veizer, J., et al., 2001. High-Resolution Strontium Isotope Stratigraphy across the Cambrian-Ordovician Transition. Geochimica et Cosmochimica Acta, 65(14): 2273–2292. https://doi.org/10.1016/s0016-7037(01)00580-4 CrossRefGoogle Scholar
  15. Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2002. Lithofacies Palaeogeography of the Middle Cambrian. China Journal of Palaeogeography, 4(2): 1–11 (in Chinese with English Abstract)Google Scholar
  16. Gaines, R. R., Mering, J. A., Zhao, Y. L., et al., 2011. Stratigraphic and Microfacies Analysis of the Kaili Formation, a Candidate GSSP for the Cambrian Series 2–Series 3 Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3/4): 171–183. https://doi.org/10.1016/j.palaeo.2011.08.018 CrossRefGoogle Scholar
  17. Glumac, B., 2001. Influence of Early Lithification on Late Diagenesis of Microbialites: Insights from 18O Compositions of Upper Cambrian Carbonate Deposits from the Southern Appalachians. PALAIOS, 16(6): 593–600. https://doi.org/10.1669/0883-1351(2001)016<0593:ioelol>2.0.co;2CrossRefGoogle Scholar
  18. Glumac, B., Walker, K. R., 1998. A Late Cambrian Positive Carbon-Isotope Excursion in the Southern Appalachians; Relation to Biostratigraphy, Sequence Stratigraphy, Environments of Deposition, and Diagenesis. Journal of Sedimentary Research, 68(6): 1212–1222. https://doi.org/10.2110/jsr.68.1212 CrossRefGoogle Scholar
  19. Glumac, B., Mutti, L. E., 2007. Late Cambrian (Steptoean) Sedimentation and Responses to Sea-Level Change along the Northeastern Laurentian Margin: Insights from Carbon Isotope Stratigraphy. Geological Society of America Bulletin, 119(5/6): 623–636. https://doi.org/10.1130/b25897.1 CrossRefGoogle Scholar
  20. Glumac, B., Spivak-Birndorf, M. L., 2002. Stable Isotopes of Carbon as an Invaluable Stratigraphic Tool: An Example from the Cambrian of the Northern Appalachians, USA. Geology, 30(6): 563–566. https://doi.org/10.1130/0091-7613(2002)030<0563:siocaa>2.0.co;2CrossRefGoogle Scholar
  21. Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2005. Carbon and Oxygen Isotopic Composition of Lower to Middle Cambrian Sediments at Taijiang, Guizhou Province, China. Geological Magazine, 142(6): 723–733. https://doi.org/10.1017/s0016756805001202 CrossRefGoogle Scholar
  22. Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2010. Corrigendum to “A Negative Carbon Isotope Excursion Defines the Boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China” [Palaeogeography, Palaeoclimatology, Palaeoecology, 285: 143–151]. Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1/2/3/4): 118. https://doi.org/10.1016/j.palaeo.2010.01.022 CrossRefGoogle Scholar
  23. Han, S. C., Hu, K., Cao, J., et al., 2015. Origin of Early Cambrian Black-Shale-Hosted Barite Deposits in South China: Mineralogical and Geochemical Studies. Journal of Asian Earth Sciences, 106: 79–94. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  24. Han, X. T., Bao, Z. Y., Xie, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1): 167–176. https://doi.org/10.3799/dqkx.2016.013 (in Chinese with English Abstract)Google Scholar
  25. Jacobson, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1/2/3): 37–57. https://doi.org/10.1016/s0009-2541(99)00080-7 CrossRefGoogle Scholar
  26. Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3/4): 409–430. https://doi.org/10.1016/0012-821x(93)90254-7 CrossRefGoogle Scholar
  27. Kouchinsky, A., Bengtson, S., Gallet, Y., et al., 2008. The SPICE Carbon Isotope Excursion in Siberia: A Combined Study of the Upper Middle Cambrian–Lowermost Ordovician Kulyumbe River Section, Northwestern Siberian Platform. Geological Magazine, 145(5): 609–622. https://doi.org/10.1017/s0016756808004913 CrossRefGoogle Scholar
  28. Kouchinsky, A., Bengtson, S., Missarzhevsky, V. V., et al., 2001. Carbon Isotope Stratigraphy and the Problem of a Pre-Tommotian Stage in Siberia. Geological Magazine, 138(4): 387–396. https://doi.org/10.1017/s0016756801005684 CrossRefGoogle Scholar
  29. Li, S. H., Li S. P., Hu, Y. Y., et al., 2017. Sequence Stratigraphy: Problems and Discussion. Earth Science, 42(12): 2312–2326. https://doi.org/10.3799/dqkx.2017.144 (in Chinese with English Abstract)Google Scholar
  30. Lu, Y. H., Lin, H. L., 1981. Zonation of Cambrian Faunas in the western Zhejiang and Their Correlation with Those in North China, Australia and Sweden. US Department of the Interior, Geological Survey, Open-File Report, 81(743): 118–120Google Scholar
  31. Lu, Y. H., Lin, H. L., 1983. Zonation and Correlation of Cambrian Faunas in W Zhejiang. Acta Geologica Sinica. 57(4): 317–328 (in Chinese with English Abstract)Google Scholar
  32. Lu, Y. H., Lin, H. L., 1989. The Cambrian Trilobites of Western Zhejiang. Acta Palaeontologica Sinica. 57: 317–328 (in Chinese with English Abstract)Google Scholar
  33. Maloof, A. C., Schrag, D. P., Crowley, J. L., et al., 2005. An Expanded Record of Early Cambrian Carbon Cycling from the Anti-Atlas Margin, Morocco. Canadian Journal of Earth Sciences, 42(12): 2195–2216. https://doi.org/10.1139/e05-062 CrossRefGoogle Scholar
  34. Mei, M. X., Ma, Y. S., Zhang, H., et al., 2007. From Basin Black Shales to Platform Carbonate Rocks: A Study on Sequence Stratigraphy for the Lower Cambrian of the Upper-Yangtze Region in South China. Acta Geologica Sinica: English Edition, 81(5): 739–755. https://doi.org/10.1111/j.1755-6724.2007.tb00999.x CrossRefGoogle Scholar
  35. Miller, J. F., Ethington, R. L., Evans, K. R., et al., 2006. Proposed Stratotype for the Base of the Highest Cambrian Stage at the First Appearance Datum of Cordylodus Andresi, Lawson Cove Section, Utah, USA. Palaeoworld, 15(3/4): 384–405. https://doi.org/10.1016/j.palwor.2006.10.017 CrossRefGoogle Scholar
  36. Miller, J. F., Evans, K. R., Freeman, R. L., et al., 2011. Proposed Stratotype for the Base of the Lawsonian Stage (Cambrian Stage 10) at the First Appearance Datum of Eoconodontus Notchpeakensis (Miller) in the House Range, Utah, USA. Bulletin of Geosciences, 86(3): 595–620. https://doi.org/10.3140/bull.geosci.1255 CrossRefGoogle Scholar
  37. Miller, J. F., Ripperdan, R. L., Loch, J. D., et al., 2015. Proposed GSSP for the Base of Cambrian Stage 10 at the Lowest Occurrence of Eoconodontus Notchpeakensis in the House Range, Utah, USA. Annales de Paléontologie, 101(3): 199–211. https://doi.org/10.1016/j.annpal.2015.04.008 CrossRefGoogle Scholar
  38. Montañez, I. P., Osleger, D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10: 1–7Google Scholar
  39. Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Event: New Insights towards Understanding a Global Phenomenon. Geobios, 47(6): 371–387. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  40. Peng, S. C., 2003. Chronostratigraphic Subdivision of the Cambrian of China. Geologica Acta, 1(1): 135–144Google Scholar
  41. Peng, S. C., Babcock, L. E., Zhu, M. Y., 2001. Cambrian System of South China. Press of University of Science and Technology of China, Hefei. 1–310Google Scholar
  42. Peng, S. C., Babcock, L. E., Zhu, X. J., et al., 2014. A Potential GSSP for the Base of the Uppermost Cambrian Stage, Coinciding with the First Appearance of Lotagnostus Americanusat Wa’ergang, Hunan, China. GFF, 136(1): 208–213. https://doi.org/10.1080/11035897.2013.865666 CrossRefGoogle Scholar
  43. Peng, S. C., Babcock, L. E., Zuo, J. X., 2012. The Global Standard Stratotype-Section and Point (GSSP) for the Base of the Jiangshanian Stage (Cambrian: Furongian) at Duibian, Jiangshan, Zhejiang, Southeast China. Episodes. 35(4): 462–477Google Scholar
  44. Peng, S. C., Babcock, L. E., Zuo, J. X., et al., 2009a. The Global Boundary Stratotype Section and Point (GSSP) of the Guzhangian Stage (Cambrian) in the Wuling Mountains, Northwestern Hunan, China. Episodes, 32(1): 41–55.Google Scholar
  45. Peng, S. C., Babcock, L. E., Zuo, J. X., et al., 2009b. Proposed GSSP for the Base of Cambrian Stage 9, Coinciding with the First Appearance of Agnostotes Orientalis, at Duibian, Zhejiang, China. Science in China Series D: Earth Sciences, 52(4): 434–451. https://doi.org/10.1007/s11430-009-0045-8 CrossRefGoogle Scholar
  46. Peng, S. C., Zhu, X. J., Babcock, L. E., et al., 2004. Potential Global Stratotype Sections and Points in China for Defining Cambrian Stages and Series. Geobios, 37(2): 253–258. https://doi.org/10.1016/j.geobios.2003.02.003 CrossRefGoogle Scholar
  47. Peng, S. C., Zhu, X. J., Zuo, J. X., et al., 2011. Recently Ratified and Proposed Cambrian Global Standard Stratotype-Section and Points. Acta Geologica Sinica: English Edition, 85(2): 296–308. https://doi.org/10.1111/j.1755-6724.2011.00399.x CrossRefGoogle Scholar
  48. Peng, S. C., Zuo, J. X., Babcock, L. E., et al., 2005. Cambrian Section at Dadoushan near Duibian, Jiangshan, Western Zhejiang and Candidate Stratotype for the Base of an Unnamed Global Stage Defined by the FAD of Agnostotes orientalis. In: Peng, S. C., Babcock, L. R., Zhu, M. Y., eds., Cambrian System of China and Korea, Guide to Field Excursions. University of Science and Technology of China Press, Hefei. 210–227Google Scholar
  49. Peng, Y., Peng, Y. B., Lang, X. G., et al., 2016. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China. Journal of Earth Science, 27(2): 242–254. https://doi.org/10.1007/s12583-016-0694-4 CrossRefGoogle Scholar
  50. Ripperdan, R. L., Magaritz, M., Nicoll, R. S., et al., 1992. Simultaneous Changes in Carbon Isotopes, Sea Level, and Conodont Biozones within the Cambrian-Ordovician Boundary Interval at Black Mountain, Australia. Geology, 20(11): 1039. https://doi.org/10.1130/0091-7613(1992)020<1039:scicis>2.3.co;2CrossRefGoogle Scholar
  51. Ripperdan, R. L., Miller, J. F., 1995. Carbon-Isotope Ratios from the Cambrian–Ordovician Boundary Section at Lawson Cove, Ibex area, Utah. In: Cooper, J. D., Droser, M. L., Finney, S. C., eds., Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Pacific Section SEPM, Fullerton, California. 129–132Google Scholar
  52. Saltzman, M. R., Cowan, C. A., Runkel, A. C., et al., 2004. The Late Cambrian Spice (13C) Event and the Sauk II-SAUK III Regression: New Evidence from Laurentian Basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research, 74(3): 366–377. https://doi.org/10.1306/120203740366 CrossRefGoogle Scholar
  53. Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3/4): 211–223. https://doi.org/10.1016/s0031-0182(00)00128-0 CrossRefGoogle Scholar
  54. Saltzman, M. R., Runnegar, B., Lohmann, K. C., 1998. Carbon Isotope Stratigraphy of Upper Cambrian (Steptoean Stage) Sequences of the Eastern Great Basin: Record of a Global Oceanographic Event. Geological Society of America Bulletin, 110(3): 285–297. https://doi.org/10.1130/0016-7606(1998)110<0285:cisouc>2.3.co;2CrossRefGoogle Scholar
  55. Sial, A. N., Peralta, S., Ferreira, V. P., et al., 2008. Upper Cambrian Carbonate Sequences of the Argentine Precordillera and the Steptoean C-Isotope Positive Excursion (SPICE). Gondwana Research, 13(4): 437–452. https://doi.org/10.1016/j.gr.2007.05.001 CrossRefGoogle Scholar
  56. Wang, G. Z., Wang, J. S., Wang, Z., et al., 2017. Carbon Isotope Gradient of the Ediacaran Cap Carbonate in the Shennongjia Area and Its Implications for Ocean Stratification and Palaeogeography. Journal of Earth Science, 28(2): 187–195. https://doi.org/10.1007/s12583-016-0923-x CrossRefGoogle Scholar
  57. Wang, S. F., Zou, C. N., Dong, D. Z., et al., 2015. Multiple Controls on the Paleoenvironment of the Early Cambrian Marine Black Shales in the Sichuan Basin, SW China: Geochemical and Organic Carbon Isotopic Evidence. Marine and Petroleum Geology, 66: 660–672. https://doi.org/10.1016/j.marpetgeo.2015.07.009 CrossRefGoogle Scholar
  58. Wotte, T., Álvaro, J. J., Shields, G. A., et al., 2007. C-, O-And Sr-Isotope Stratigraphy across the Lower–Middle Cambrian Transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(1/2): 47–70. https://doi.org/10.1016/j.palaeo.2007.09.002 CrossRefGoogle Scholar
  59. Zhang, J. P., Fan, T. L., Algeo, T. J., et al., 2016. Paleo-Marine Environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 66–79. https://doi.org/10.13039/100000001 CrossRefGoogle Scholar
  60. Zhang, W. H., Shi, X. Y., Jiang, G. Q., et al., 2015. Mass-Occurrence of Oncoids at the Cambrian Series 2–Series 3 Transition: Implications for Microbial Resurgence Following an Early Cambrian Extinction. Gondwana Research, 28(1): 432–450. https://doi.org/10.13039/501100002855 CrossRefGoogle Scholar
  61. Zhao, Y. L., Yuan, J. L., Peng, S. C., et al., 2008. A New Section of Kaili Formation (Cambrian) and a Biostratigraphic Study of the Boundary Interval across the Undefined Cambrian Series 2 and Series 3 at Jianshan, Jianhe County, China with a Discussion of Global Correlation Based on the First Appearance Datum of Oryctocephalus Indicus (Reed, 1910). Progress in Natural Science, 18(12): 1549–1556. https://doi.org/10.1016/j.pnsc.2008.05.020 CrossRefGoogle Scholar
  62. Zhu, M. Y., Babcock, L. E., Peng, S. C., 2006. Advances in Cambrian Stratigraphy and Paleontology: Integrating Correlation Techniques, Paleobiology, Taphonomy and Paleoenvironmental Reconstruction. Palaeoworld, 15(3/4): 217–222. https://doi.org/10.1016/j.palwor.2006.10.016 CrossRefGoogle Scholar
  63. Zhu, M. Y., Zhang, J. M., Li, G. X., et al., 2004. Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 37(2): 287–301. https://doi.org/10.1016/j.geobios.2003.06.001 CrossRefGoogle Scholar
  64. Zuo, J. X., Peng, S. C., Zhu, X. J., 2008a. Carbon-Isotope Composition of Cambrian Carbonate Rocks in Yangtze Platform, South China and Its Geological Implications. Geochimica, 37(2): 118–128. https://doi.org/10.3321/j.issn:0379-1726.2008.02.003 (in Chinese with English Abstract)Google Scholar
  65. Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2008b. Evolution of Carbon Isotope Composition in Potential Global Stratotype Section and Point at Luoyixi, South China, for the Base of the Unnamed Global Seventh Stage of Cambrian System. Journal of China University of Geosciences, 19(1): 9–22. https://doi.org/10.1016/s1002-0705(08)60020-5 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Institute of Geological SurveyZhengzhouChina
  2. 2.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
  3. 3.Department of Earth SciencesUniversity of PisaPisaItaly

Personalised recommendations