Skip to main content
Log in

Zinc Isotope Characteristics in the Biogeochemical Cycle as Revealed by Analysis of Suspended Particulate Matter (SPM) in Aha Lake and Hongfeng Lake, Guizhou, China

  • Environmental Geology and Geothermal
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Zn isotope is a useful tool for tracing biogeochemical processes as zinc plays important roles in the biogeochemistry of natural systems. However, the Zn isotope composition in the lake ecosystems has not been well characterized. In order to resolve this problem, we investigate the Zn isotope compositions of suspended particulate matter (SPM) and biological samples collected from the Aha Lake and Hongfeng Lake, and their tributaries in summer and winter, aiming to explore the potential of this novel isotope system as a proxy for biogeochemical processes in aqueous environments. Concentration of dissolved Zn ranges from 0.65 to 5.06 μg/L and 0.74 to 12.04 μg/L for Aha Lake and Hongfeng Lake, respectively, while Zn (SPM) ranges from 0.18 to 0.70 mg/g and 0.24 to 0.75 mg/g for Aha Lake and Hongfeng Lake, respectively. The Zn isotope composition in SPM from Aha Lake and its main tributaries ranges from -0.18‰ to 0.27‰ and -0.17‰ to 0.46‰, respectively, and it varies from -0.29‰ to 0.26‰ and -0.04‰ to 0.48‰, respectively in Hongfeng Lake and its main tributaries, displaying a wider range in tributaries than lakes. These results imply that Zn isotope compositions are mainly affected by tributaries inputting into Aha Lake, while adsorption process by algae is the major factor for the Zn isotope composition in Hongfeng Lake, and ZnS precipitation leads to the light Zn isotope composition of SPM in summer. These data and results provide the basic information of the Zn isotope for the lake ecosystem, and promote the application of Zn isotope in biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • An, Y. J., Huang, F., 2014. A Review of Mg Isotope Analytical Methods by MC-ICP-MS. Journal of Earth Science, 25(5): 822–840. https://doi.org/10.1007/s12583-014-0477-8

    Google Scholar 

  • Archer, C. D., Vance, D., Butler, I., 2004. Zn Isotopes Fractionation upon Sorption and Precipitation. Goldschmidt Geochemistry, Conference on Processes in Geochemistry: Forces, Fluxes and Structure, June 5–11, 2004, Copenhagen. 68: A325

    Google Scholar 

  • Alloway, B. J., 2004. Zinc in Soil and Crop Nutrition. Second Edition. International Zinc Association, International Fertilizer Industry Association, Brussels, Belgium, Paris

    Google Scholar 

  • Andreini, C., Banci, L., Bertini, I., et al., 2006. Counting the Zinc-Proteins Encoded in the Human Genome. Journal of Proteome Research, 5(1): 196–201. https://doi.org/10.1021/pr050361j

    Google Scholar 

  • Bai, Z. G., Wu, F. C., Wan, X., et al., 1996. Mechanism of Seasonal Deterioration of Water Quality in Lake Baihua, China. Chinese Journal of Geochemistry, 15(2): 185–188. https://doi.org/10.1007/bf02843357

    Google Scholar 

  • Bailey, L. T., Mitchell, C. P. J., Engstrom, D. R., et al., 2017. Influence of Porewater Sulfide on Methylmercury Production and Partitioning in Sulfate-Impacted Lake Sediments. Science of the Total Environment, 580: 1197–1204. https://doi.org/10.1016/j.scitotenv.2016.12.078

    Google Scholar 

  • Balistrieri, L. S., Borrok, D. M., Wanty, R. B., et al., 2008. Fractionation of Cu and Zn Isotopes during Adsorption onto Amorphous Fe(III) Oxyhydroxide: Experimental Mixing of Acid Rock Drainage and Ambient River Water. Geochimica et Cosmochimica Acta, 72(2): 311–328. https://doi.org/10.1016/j.gca.2007.11.013

    Google Scholar 

  • Barnes, J. D., Balaguer, L., Manrique, E., et al., 1992. A Reappraisal of the Use of DMSO for the Extraction and Determination of Chlorophylls a and b in Lichens and Higher Plants. Environmental and Experimental Botany, 32(2): 85–100. https://doi.org/10.1016/0098-8472(92)90034-y

    Google Scholar 

  • Beard, B. L., Johnson, C. M., Skulan, J. L., et al., 2003. Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe. Chemical Geology, 195(1/2/3/4): 87–117. https://doi.org/10.1016/s0009-2541(02)00390-x

    Google Scholar 

  • Bermin, J., Vance, D., Archer, C., et al., 2006. The Determination of the Isotopic Composition of Cu and Zn in Seawater. Chemical Geology, 226(3/4): 280–297. https://doi.org/10.1016/j.chemgeo.2005.09.025

    Google Scholar 

  • Bigalke, M., Weyer, S., Kobza, J., et al., 2010. Stable Cu and Zn Isotope Ratios as Tracers of Sources and Transport of Cu and Zn in Contaminated Soil. Geochimica et Cosmochimica Acta, 74(23): 6801–6813. https://doi.org/10.1016/j.gca.2010.08.044

    Google Scholar 

  • Blättler, C. L., Miller, N. R., Higgins, J. A., 2015. Mg and Ca Isotope Signatures of Authigenic Dolomite in Siliceous Deep-Sea Sediments. Earth and Planetary Science Letters, 419: 32–42. https://doi.org/10.1016/j.epsl.2015.03.006

    Google Scholar 

  • Borrok, D. M., Nimick, D. A., Wanty, R. B., et al., 2008. Isotopic Variations of Dissolved Copper and Zinc in Stream Waters Affected by Historical Mining. Geochimica et Cosmochimica Acta, 72(2): 329–344. https://doi.org/10.1016/j.gca.2007.11.014

    Google Scholar 

  • Brand, L. E., Sunda, W. G., Guillard, R. R. L., 1983. Limitation of Marine Phytoplankton Reproductive Rates by Zinc, Manganese, and Iron. Limnology and Oceanography, 28(6): 1182–1198. https://doi.org/10.4319/lo.1983.28.6.1182

    Google Scholar 

  • Brown, P. H., Cakmak, I., Zhang, Q. L., 1993. Form and Function of Zinc in Plants. In: Robson, A. D., ed., Zn in Soils and Plants. Springer, Dordrecht. 93–106

    Google Scholar 

  • Bryan, A. L., Dong, S. F., Wilkes, E. B., et al., 2015. Zinc Isotope Fractionation during Adsorption onto Mn Oxyhydroxide at Low and High Ionic Strength. Geochimica et Cosmochimica Acta, 157: 182–197. https://doi.org/10.1016/j.gca.2015.01.026

    Google Scholar 

  • Budd, P., Lythgoe, P., McGill, R. A. R., et al., 1999. Zinc Isotope Fractionation in Liquid Brass (Cu-Zn) Alloy: Potential Environmental and Archaeological Applications. Geological Society, London, Special Publications, 165(1): 147–153. https://doi.org/10.1144/gsl.sp.1999.165.01.11

    Google Scholar 

  • Cacaly, S., Marechal, C., Juillot, F., et al., 2004. Zn Isotopes Fractionation upon Sorption and Precipitation. Goldschmidt Geochemistry, Conference on Processes in Geochemistry: Forces, Fluxes and Structure, June 5–11, 2004, Copenhagen. 68(11): A366

    Google Scholar 

  • Chen, J. B., Gaillardet, J., Louvat, P., et al., 2009. Zn Isotopes in the Suspended Load of the Seine River, France: Isotopic Variations and Source Determination. Geochimica et Cosmochimica Acta, 73(14): 4060–4076. https://doi.org/10.1016/j.gca.2009.04.017

    Google Scholar 

  • Cloquet, C., Carignan, J., Libourel, G., 2006. Isotopic Composition of Zn and Pb Atmospheric Depositions in an Urban/Periurban Area of Northeastern France. Environmental Science & Technology, 40(21): 6594–6600. https://doi.org/10.1021/es0609654

    Google Scholar 

  • Criss, R. E., 1999. Principles of Stable Isotope Distribution. Oxford University Press, New York

    Google Scholar 

  • Ding, X. C., Nomura, M., Suzuki, T., et al., 2006. Chromatographic Zinc Isotope Separation by Phenol Formaldehyde Benzo Crown Resin. Journal of Chromatography A, 1113(1/2): 182–185. https://doi.org/10.1016/j.chroma.2006.02.015

    Google Scholar 

  • Dolgopolova, A., Weiss, D. J., Seltmann, R., et al., 2006. Use of Isotope Ratios to Assess Sources of Pb and Zn Dispersed in the Environment during Mining and Ore Processing within the Orlovka-Spokoinoe Mining Site (Russia). Applied Geochemistry, 21(4): 563–579. https://doi.org/10.1016/j.apgeochem.2005.12.014

    Google Scholar 

  • Frausto, J. J. R., 1991. Chemistry of Elements: The Inorganic Chemistry of Life. Clarendon Press, Oxford. 206

    Google Scholar 

  • Fujii, T., Moynier, F., Pons, M. L., et al., 2011. The Origin of Zn Isotope Fractionation in Sulfides. Geochimica et Cosmochimica Acta, 75(23): 7632–7643. https://doi.org/10.1016/j.gca.2011.09.036

    Google Scholar 

  • Fujii, T., Albarède, F., 2012. Ab Initio Calculation of the Zn Isotope Effect in Phosphates, Citrates, and Malates and Applications to Plants and Soil. PLoS ONE, 7(2): e30726. https://doi.org/10.1371/journal.pone.0030726

    Google Scholar 

  • Gagnevin, D., Boyce, A. J., Barrie, C. D., et al., 2012. Zn, Fe and S Isotope Fractionation in a Large Hydrothermal System. Geochimica et Cosmochimica Acta, 88: 183–198. https://doi.org/10.1016/j.gca.2012.04.031

    Google Scholar 

  • Gao, Z. F., Zhu, X. K., 2014. Lateral Variation of Zinc Isotopes in Dongshengmiao Ore Deposit, Inner Mongolia, China. Acta Geologica Sinica—English Edition, 88(Suppl. 2): 1563–1564. https://doi.org/10.1111/1755-6724.12384_6

    Google Scholar 

  • Gavriil, A. M., Angelidis, M. O., 2005. Metal and Organic Carbon Distribution in Water Column of a Shallow Enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, Island of Lesvos, Greece. Estuarine, Coastal and Shelf Science, 64(2/3): 200–210. https://doi.org/10.1016/j.ecss.2005.02.015

    Google Scholar 

  • Gélabert, A., Pokrovsky, O. S., Viers, J., et al., 2006. Interaction between Zinc and Freshwater and Marine Diatom Species: Surface Complexation and Zn Isotope Fractionation. Geochimica et Cosmochimica Acta, 70(4): 839–857. https://doi.org/10.1016/j.gca.2005.10.026

    Google Scholar 

  • Guinoiseau, D., Gélabert, A., Moureau, J., et al., 2016. Zn Isotope Fractionation during Sorption onto Kaolinite. Environmental Science & Technology, 50(4): 1844–1852. https://doi.org/10.1021/acs.est.5b05347

    Google Scholar 

  • Håkanson, L., Peters, R. H., 1995. Predictive Limnology Methods for Predictive Modelling. SPC Academic Publishing, Amsterdam. 1–464

    Google Scholar 

  • Hambidge, M., 2000. Zinc and Health: Current Status and Future Directions. Nutrition, 130: 1344–1349

    Google Scholar 

  • Hong, S., Chen, J. S., Cheng, B. Q., 2006. Research on Suspended Matter and Sediment Quality Criteria for Metals in Yellow River Using Equilibrium Partitioning-Biological Effect Approach. Journal of Wuhan University of Technology, 28(12): 61–65 (in Chinese with English Abstract)

    Google Scholar 

  • Hutchinson, G. E. A., 1957. Treatise on Limnology, Introduction to Lake Biology and Limnoplankton. John Wiley & Sons, New York. 1115

    Google Scholar 

  • John, S. G., Bergquist, B. A., Boyle, E. A., 2004. Zinc Isotope Variations in Natural and Cultured Marine Phytoplankton. AGU Fall Meeting, American Geophysical Union, San Francisco. V53B-04

    Google Scholar 

  • John, S. G., Geis, R. W., Saito, M. A., et al., 2007. Zinc Isotope Fractionation during High-Affinity and Low-Affinity Zinc Transport by the Marine Diatom Thalassiosira Oceanica. Limnology and Oceanography, 52(6): 2710–2714. https://doi.org/10.4319/lo.1992.37.1.0025

    Google Scholar 

  • John, S. G., Rouxel, O. J., Craddock, P. R., et al., 2008. Zinc Stable Isotopes in Seafloor Hydrothermal Vent Fluids and Chimneys. Earth and Planetary Science Letters, 269(1/2): 17–28. https://doi.org/10.1016/j.epsl.2007.12.011

    Google Scholar 

  • John, S. G., Conway, T. M., 2014. A Role for Scavenging in the Marine Biogeochemical Cycling of Zinc and Zinc Isotopes. Earth and Planetary Science Letters, 394: 159–167. https://doi.org/10.1016/j.epsl.2014.02.053

    Google Scholar 

  • Juillot, F., Maréchal, C., Ponthieu, M., et al., 2008. Zn Isotopic Fractionation Caused by Sorption on Goethite and 2-Lines Ferrihydrite. Geochimica et Cosmochimica Acta, 72(19): 4886–4900. https://doi.org/10.1016/j.gca.2008.07.007

    Google Scholar 

  • Kafantaris, F. C. A., Borrok, D. M., 2014. Zinc Isotope Fractionation during Surface Adsorption and Intracellular Incorporation by Bacteria. Chemical Geology, 366: 42–51. https://doi.org/10.1016/j.chemgeo.2013.12.007

    Google Scholar 

  • Kasprzak, P., Padisák, J., Koschel, R., et al., 2008. Chlorophyll a Concentration across a Trophic Gradient of Lakes: An Estimator of Phytoplankton Biomass?. Limnologica, 38(3/4): 327–338. https://doi.org/10.1016/j.limno.2008.07.002

    Google Scholar 

  • Kelley, K. D., Wilkinson, J. J., Chapman, J. B., et al., 2009. Zinc Isotopes in Sphalerite from Base Metal Deposits in the Red Dog District, Northern Alaska. Economic Geology, 104(6): 767–773. https://doi.org/10.2113/gsecongeo.104.6.767

    Google Scholar 

  • Li, D. D., Liu, S. A., Li, S. G., 2015. Copper Isotope Fractionation during Adsorption onto Kaolinite: Experimental Approach and Applications. Chemical Geology, 396: 74–82. https://doi.org/10.1016/j.chemgeo.2014.12.020

    Google Scholar 

  • Li, S. Z., Zhu, X. K., Tang, S. H, et al., 2008. The Application of MC-ICP-MS to High-Resolution Measurement of Zn Isotope Ratios. Acta Petrologica et Mineralogica, 27(4): 273–278 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Z. H., Duan, D. F., Jiang, S. Y., et al., 2018. In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. Journal of Earth Science, 29(2): 295–306. https://doi.org/10.1007/s12583-018-0837-x

    Google Scholar 

  • Lippard, S. J., Berg, J. M., 1994. Principles of Bioinorganic Chemistry. University Science Books, Mill Valley. 411

    Google Scholar 

  • Little, S. H., Vance, D., McManus, J., et al., 2016. Key Role of Continental Margin Sediments in the Oceanic Mass Balance of Zn and Zn Isotopes. Geology, 44(3): 207–210. https://doi.org/10.1130/g37493.1

    Google Scholar 

  • Luck, J. M., Ben Othman, D., Albarède, F., et al., 1999. Pb, Zn and Cu Isotopic Variations and Trace Elements in Rain. In: Ármannsson, J., ed., Geochemistry of the Earth’s Surface. Balkema, Rofferdam. 199–202

    Google Scholar 

  • Maréchal, C., Telouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156: 251–273. https://doi.org/10.1016/S0009-2541(98)00191-0

    Google Scholar 

  • Maréchal, C., Nicolas, E., Douchet, C., et al., 2000. Abundance of Zinc Isotopes as a Marine Biogeochemical Tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1999GC00029. https://doi.org/10.1029/1999gc000029

    Google Scholar 

  • Maréchal, C., Sheppard, S. M. F., 2002. Isotopic Fractionation of Cu and Zn between Chloride and Nitrate Solutions and Malachite or Smithsonite at 30 and 50 ºC. In: Abstracts of the 12th Goldschmidt Conference, Aug. 18–23, 2002, Davos. Geochimica et Cosmochimica Acta, 66(15A): A484

    Google Scholar 

  • Maréchal, C., Albarède, F., 2002. Ion-Exchange Fractionation of Copper and Zinc Isotopes. Geochimica et Cosmochimica Acta, 66(9): 1499–1509. https://doi.org/10.1016/S0016-7037(01)00815-8

    Google Scholar 

  • Mason, T. F. D., Weiss, D. J., Chapman, J. B., et al., 2005. Zn and Cu Isotopic Variability in the Alexandrinka Volcanic-Hosted Massive Sulphide (VHMS) Ore Deposit, Urals, Russia. Chemical Geology, 221(3/4): 170–187. https://doi.org/10.1016/j.chemgeo.2005.04.011

    Google Scholar 

  • Mathur, R., Ruiz, J., Titley, S., et al., 2005. Cu Isotopic Fractionation in the Supergene Environment with and without Bacteria. Geochimica et Cosmochimica Acta, 69(22): 5233–5246. https://doi.org/10.1016/j.gca.2005.06.022

    Google Scholar 

  • Mathur, R., Jin, L., Prush, V., et al., 2012. Cu Isotopes and Concentrations during Weathering of Black Shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA). Chemical Geology, 304/305: 175–184. https://doi.org/10.1016/j.chemgeo.2012.02.015

    Google Scholar 

  • Mathys, W., 1975. Enzymes of Heavy-Metal-Resistant and Non-Resistant Populations of Silene Cucubalus and Their Interaction with some Heavy Metals in Vitro and in Vivo. Physiologia Plantarum, 33(2): 161–165. https://doi.org/10.1111/j.1399-3054.1975.tb03785.x

    Google Scholar 

  • Mattielli, N., Petit, J. C. J., Deboudt, K., et al., 2009. Zn Isotope Study of Atmospheric Emissions and Dry Depositions within a 5 km Radius of a Pb-Zn Refinery. Atmospheric Environment, 43(6): 1265–1272. https://doi.org/10.1016/j.atmosenv.2008.11.030

    Google Scholar 

  • Moynier, F., Beck, P., Yin, Q. Z., et al., 2010. Volatilization Induced by Impacts Recorded in Zn Isotope Composition of Ureilites. Chemical Geology, 276(3/4): 374–379. https://doi.org/10.1016/j.chemgeo.2010.07.005

    Google Scholar 

  • Nimer, N. A., Dong, L. F., Guan, Q., et al., 1995. Calcification Rate, Dissolved Inorganic Carbon Utilization and Carbonic Anhydrase Activity in Emliania Huxleyi. Bulletin de l’Institut Océanographique de Monaco, 14: 43–50

    Google Scholar 

  • Ödman, F., Ruth, T., Pontér, C., 1999. Validation of a Field Filtration Technique for Characterization of Suspended Particulate Matter from Freshwater. Part I. Major Elements. Applied Geochemistry, 14(3): 301–317. https://doi.org/10.1016/s0883-2927(98)00050-x

    Google Scholar 

  • Olhaberry, J., Leary, W., Reyes, A., et al., 1983. Biochemistry of Zinc. South African Medical Journal, 64(23): 894–895

    Google Scholar 

  • Peel, K., Weiss, D., Siggc, L., 2009. Zinc Isotope Composition of Settling Particles as a Proxy for Biogeochemical Processes in Lakes: Insights from the Eutrophic Lake Greifen, Switzerland. Limnology and Oceanography, 54(5): 1699–1708. https://doi.org/10.4319/lo.2009.54.5.1699

    Google Scholar 

  • Pichat, S., Douchet, C., Albarède, F., 2003. Zinc Isotope Variations in Deep-Sea Carbonates from the Eastern Equatorial Pacific over the Last 175 ka. Earth and Planetary Science Letters, 210(1/2): 167–178. https://doi.org/10.1016/s0012-821x(03)00106-7

    Google Scholar 

  • Pokrovsky, O. S., Viers, J., Freydier, R., 2005a. Zinc Stable Isotope Fractionation during Its Adsorption on Oxides and Hydroxides. Journal of Colloid and Interface Science, 291(1): 192–200. https://doi.org/10.1016/j.jcis.2005.04.079

    Google Scholar 

  • Pokrovsky, O. S., Pokrovski, G. S., Gélabert, A., et al., 2005b. Speciation of Zn Associated with Diatoms Using X-Ray Absorption Spectroscopy. Environmental Science & Technology, 39(12): 4490–4498. https://doi.org/10.1021/es0480419

    Google Scholar 

  • Reddy, T. R., Frierdich, A. J., Beard, B. L., et al., 2015. The Effect of pH on Stable Iron Isotope Exchange and Fractionation between Aqueous Fe(II) and Goethite. Chemical Geology, 397: 118–127. https://doi.org/10.1016/j.chemgeo.2015.01.018

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reimann, C., Caritat, P. D., 2005. Distinguishing between Natural and Anthropogenic Sources for Elements in the Environment: Regional Geochemical Surveys versus Enrichment Factors. Science of the Total Environment, 337(1): 91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011

    Google Scholar 

  • Rousset, D., Henderson, G. M., Shaw, S., 2004. Cu and Zn Isotope Fractionation during Sorption Experiments. Goldschmidt Geochemistry, Conference on Processes in Geochemistry: Forces, Fluxes and Structure, June 5–11, 2004, Copenhagen. 68(11): A360

    Google Scholar 

  • Sass, H., Cypionka, H., Babenzien, H. D., 1997. Vertical Distribution of Sulfate-Reducing Bacteria at the Oxic-Anoxic Interface in Sediments of the Oligotrophic Lake Stechlin. FEMS Microbiology Ecology, 22: 245–255. https://doi.org/10.1016/s0168-6496(96)00096-7

    Google Scholar 

  • Shankar, A. H., Prasad, A. S., 1998. Zinc and Immune Function: The Biological Basis of Altered Resistance to Infection. The American Journal of Clinical Nutrition, 68(2): 447S–463S. https://doi.org/10.1093/ajcn/68.2.447s

    Google Scholar 

  • Sigg, L., 1985. Metal Transfer Mechanisms in Lakes: The Role of Settling Particles. Chemical Processes in Lakes. John Wiley and Sons, New York. 283–310

    Google Scholar 

  • Sigg, L., Kistler, D., Ulrich, M. M., 1995. Seasonal Variations of Zinc in a Eutrophic Lake. Aquatic Geochemistry, 1(3): 313–328. https://doi.org/10.1007/bf00822495

    Google Scholar 

  • Sivry, Y., Riotte, J., Sonke, J. E., et al., 2008. Zn Isotopes as Tracers of Anthropogenic Pollution from Zn-Ore Smelters the Riou Mort-Lot River System. Chemical Geology, 255(3/4): 295–304. https://doi.org/10.1016/j.chemgeo.2008.06.038

    Google Scholar 

  • Song, L. T., Liu, C. Q., Wang, Z. L., et al., 2011. Iron Isotope Fractionation during Biogeochemical Cycle: Information from Suspended Particulate Matter (SPM) in Aha Lake and Its Tributaries, Guizhou, China. Chemical Geology, 280(1/2): 170–179. https://doi.org/10.1016/j.chemgeo.2010.11.006

    Google Scholar 

  • Stenberg, A., Andrén, H., Malinovsky, D., et al., 2004. Isotopic Variations of Zn in Biological Materials. Analytical Chemistry, 76(14): 3971–3978. https://doi.org/10.1021/ac049698f

    Google Scholar 

  • Sun, M. Y., Wakeham, S. G., 1994. Molecular Evidence for Degradation and Preservation of Organic Matter in the Anoxic Black Sea Basin. Geochimica et Cosmochimica Acta, 58(16): 3395–3406. https://doi.org/10.1016/0016-7037(94)90094-9

    Google Scholar 

  • Tang, S. H., Zhu, X. K., Cai, J. J., et al., 2006. Chromatographic Separation of Cu, Fe and Zn Using AG MP-1 Anion Exchange Resin for Isotope Determination by MC-ICP-MS. Rock and Mineral Analysis, 25(1): 5–8 (in Chinese with English Abstract)

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844–851. https://doi.org/10.1021/ac50043a017

    Google Scholar 

  • Thapalia, A., Borrok, D. M., Van Metre, P. C., et al., 2010. Zn and Cu Isotopes as Tracers of Anthropogenic Contamination in a Sediment Core from an Urban Lake. Environmental Science & Technology, 44(5): 1544–1550. https://doi.org/10.1021/es902933y

    Google Scholar 

  • Turner, A., Millward, G. E., 2002. Suspended Particles: Their Role in Estuarine Biogeochemical Cycles. Estuarine, Coastal and Shelf Science, 55(6): 857–883. https://doi.org/10.1006/ecss.2002.1033

    Google Scholar 

  • Vance, D., Archer, C., Bermin, J., et al., 2006. Zn Isotopes as a New Tracer of Metal Micronutrient Usage in the Oceans. Geochimica et Cosmochimica Acta, 70(18): A666. https://doi.org/10.1016/j.gca.2006.06.1245

    Google Scholar 

  • Viers, J., Oliva, P., Nonell, A., et al., 2007. Evidence of Zn Isotopic Fractionation in a Soil-Plant System of a Pristine Tropical Watershed (Nsimi, Cameroon). Chemical Geology, 239(1/2): 124–137. https://doi.org/10.1016/j.chemgeo.2007.01.005

    Google Scholar 

  • Voldrichova, P., Chrastny, V., Sipkova, A., et al., 2014. Zinc Isotope Systematics in Snow and Ice Accretions in Central European Mountains. Chemical Geology, 388: 130–141. https://doi.org/10.1016/j.chemgeo.2014.09.008

    Google Scholar 

  • Weiss, D. J., Rausch, N., Mason, T. F. D., et al., 2007. Atmospheric Deposition and Isotope Biogeochemistry of Zinc in Ombrotrophic Peat. Geochimica et Cosmochimica Acta, 71(14): 3498–3517. https://doi.org/10.1016/j.gca.2007.04.026

    Google Scholar 

  • Weiss, D. J., Mason, T. F. D., Zhao, F. J., et al., 2005. Isotopic Discrimination of Zinc in Higher Plants. New Phytologist, 165(3): 703–710. https://doi.org/10.1111/j.1469-8137.2004.01307.x

    Google Scholar 

  • Wilkinson, J. J., Weiss, D. J., Mason, T. F. D., et al., 2005. Zinc Isotope Variation in Hydrothermal Systems: Preliminary Evidence from the IRISH Midlands Ore Field. Economic Geology, 100(3): 583–590. https://doi.org/10.2113/100.3.583

    Google Scholar 

  • Young, S., Ruiz, J., 2003. Inoranic Control of Copper Isotope Fractionation in Supergene Environmentsin. EGS-AGU-EUG Joint Assembly, Nice. A2045

    Google Scholar 

  • Zhao, Y., Vance, D., Abouchami, W., et al., 2014. Biogeochemical Cycling of Zinc and Its Isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125: 653–672. https://doi.org/10.1016/j.gca.2013.07.045

    Google Scholar 

  • Zhu, X. K., Guo, Y., Williams, R. J. P., et al., 2002. Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200: 47–62. https://doi.org/10.1016/S0012-821X(02)00615-5

    Google Scholar 

Download references

Acknowledgments

We would like to thank Xiaolong Liu, Hu Ding and Li Bai for their helps in the field works, and Suohan Tang, Shizhen Li and Xuexian He for the technical support with MC-ICP-MS analysis. This study has benefited greatly from discussion with Prof. Nyekachi Adele at University of Edinburgh. This research was financially supported by the National Natural Science Foundation of China (No. 40903005). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0957-8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Liang or Cong-Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Liu, CQ., Zhu, X. et al. Zinc Isotope Characteristics in the Biogeochemical Cycle as Revealed by Analysis of Suspended Particulate Matter (SPM) in Aha Lake and Hongfeng Lake, Guizhou, China. J. Earth Sci. 31, 126–140 (2020). https://doi.org/10.1007/s12583-017-0957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0957-8

Key words

Navigation