Advertisement

Journal of Earth Science

, Volume 29, Issue 6, pp 1398–1408 | Cite as

Observations of the Singlets of Higher-Degree Modes Based on the OSE

  • Shi-Yu Zeng
  • Wen-Bin ShenEmail author
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs
  • 40 Downloads

Abstract

In this study, we select 18 SG (superconducting gravimeter) records from 15 GGP stations and 99 vertical, 69 horizontal components of IRIS broad-band seismograms during 2004 Sumatra Earthquake to detect the splitting of higher-degree Earth’s free oscillations modes (0S4, 0S7~0S10, 2S4, 1S5, 2S5, 1S6) and 12 inner-core sensitive modes (25S2, 27S2, 6S3, 9S3, 13S3, 15S3, 11S4, 18S4, 8S5, 11S5, 23S5, 16S6) by using OSE (optimal sequence estimation) method which only considers self-coupling. Results indicate that OSE can completely isolate singlets of high-degree modes in time-domain, effectively resolve the coupled multiplets independently, and reduce the possibility of mode mixing and end effect, showing that OSE could improve some signals’ signal-to-noise ratio. Comparing the results of SG records with seismic data sets suggests that the number of SG records is inadequate to detect all singlets of higher modes. Hence we mainly select plentiful seismograms of IRIS to observe the multiplets of higher modes. We estimate frequencies of the singlets using AR method and evaluate the measurement error using bootstrap method. Besides, we compared the observations with the predictions of PREM-tidal model. This study demonstrates that OSE is effective in isolating singlets of Earth’s free oscillations with higher modes. The experimental results may provide constraints to the construction of 3D Earth model.

Key words

free oscillation mode splitting detection high-degree modes OSE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors express their sincere thanks to H. Ding and W. Luan for frequent discussions about the contents of this paper. The authors appreciate Yves Rogister for providing the code for computing the theoretical eigensolutions of normal modes. The authors also thank two anonymous reviewers for their valuable comments, suggestions and laborious corrections, which greatly improved the manuscript. This study was supported by the National 973 Project of China (No. 2013CB733305), the NSFC (Nos. 41174011, 41429401, 41574007, 41210006, 41128003, 41021061). The final publication is available at Springer via  https://doi.org/10.1007/s12583-017-0810-0.

References Cited

  1. Buland, R., Berger, J., Gilbert, F., 1979. Observations from the IDA Network of Attenuation and Splitting during a Recent Earthquake. Nature, 277(5695): 358–362. https://doi.org/10.1038/277358a0CrossRefGoogle Scholar
  2. Chao, B. F., Ding, H., 2014. Spherical Harmonic Stacking for the Singlets of Earth’s Normal Modes of Free Oscillation. Geophysical Research Letters, 41(15): 5428–5435. https://doi.org/10.13039/501100004663CrossRefGoogle Scholar
  3. Chao, B. F., Gilbert, F., 1980. Autoregressive Estimation of Complex Eigenfrequencies in Low Frequency Seismic Spectra. Geophysical Journal International, 63(3): 641–657. https://doi.org/10.1111/j.1365-246x.1980.tb02643.xCrossRefGoogle Scholar
  4. Courtier, N., Ducarme, B., Goodkind, J., et al., 2000. Global Superconducting Gravimeter Observations and the Search for the Translational Modes of the Inner Core. Physics of the Earth and Planetary Interiors, 117(1/2/3/4): 3–20. https://doi.org/10.1016/s0031-9201(99)00083-7CrossRefGoogle Scholar
  5. Cummins, P., Wahr, J. M., Agnew, D. C., et al., 1991. Constraining Core Undertones Using Stacked IDA Gravity Records. Geophysical Journal International, 106: 189–198Google Scholar
  6. Dahlen, F. A., 1982. The Effect of Data Windows on the Estimation of Free Oscillation Parameters. Geophysical Journal International, 69(2): 537–549. https://doi.org/10.1111/j.1365-246x.1982.tb04964.xCrossRefGoogle Scholar
  7. Dahlen, F. A., Sailor, R. V., 1979. Rotational and Elliptical Splitting of the Free Oscillations of the Earth. Geophysical Journal International, 58(3): 609–623. https://doi.org/10.1111/j.1365-246x.1979.tb04797.xCrossRefGoogle Scholar
  8. Dahlen, F. A., Tromp, J., 1998. Theoretical Global Seismology. Princeton University, PrincetonGoogle Scholar
  9. Deuss, A., Ritsema, J., van Heijst, H., 2013. A New Catalogue of Normal-Mode Splitting Function Measurements up to 10 MHz. Geophysical Journal International, 193(2): 920–937. https://doi.org/10.1093/gji/ggt010CrossRefGoogle Scholar
  10. Ding, H., Chao, B. F., 2015a. Data Stacking Methods for Isolation of Normal-Mode Singlets of Earth’s Free Oscillation: Extensions, Comparisons, and Applications. Journal of Geophysical Research: Solid Earth, 120(7): 5034–5050. https://doi.org/10.13039/501100004663Google Scholar
  11. Ding, H., Chao, B. F., 2015b. The Slichter Mode of the Earth: Revisit with Optimal Stacking and Autoregressive Methods on Full Superconducting Gravimeter Data Set. Journal of Geophysical Research: Solid Earth, 120(10): 7261–7272. https://doi.org/10.13039/501100004663Google Scholar
  12. Ding, H., Shen, W. B., 2013a. Comparative Study of the MSE Technique and SHS Method Used for Detection of nS1 Mode Triplet. Chinese J. Geophys., 56(10): 3313–3323, https://doi.org/ 10.6038/cjg20131008 (in Chinese with English Abstract)Google Scholar
  13. Ding, H., Shen, W. B., 2013b. Search for the Slichter Modes Based on a New Method: Optimal Sequence Estimation. Journal of Geophysical Research: Solid Earth, 118(9): 5018–5029. https://doi.org/10.13039/501100001809Google Scholar
  14. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7CrossRefGoogle Scholar
  15. Efron, B., Tibshirani, R., 1986. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science, 1(1): 54–75. https://doi.org/10.1214/ss/1177013815CrossRefGoogle Scholar
  16. Giardini, D., Li, X. D., Woodhouse, J. H., 1987. Three-Dimensional Structure of the Earth from Splitting in Free-Oscillation Spectra. Nature, 325(6103): 405–411. https://doi.org/10.1038/325405a0CrossRefGoogle Scholar
  17. Giardini, D., Li, X. D., Woodhouse, J. H., 1988. Splitting Functions of Long-Period Normal Modes of the Earth. Journal of Geophysical Research: Solid Earth, 93(B11): 13716–13742. https://doi.org/10.1029/jb093ib11p13716CrossRefGoogle Scholar
  18. Gilbert, F., 1971. The Diagonal Sum Rule and Averaged Eigenfrequencies. Geophysical Journal of the Royal Astronomical Society, 23(1): 119–123. https://doi.org/10.1111/j.1365-246x.1971.tb01806.xCrossRefGoogle Scholar
  19. Häfner, R., Widmer-Schnidrig, R., 2013. Signature of 3-D Density Structure in Spectra of the Spheroidal Free Oscillation 0S2. Geophysical Journal International, 192(1): 285–294. https://doi.org/10.1093/gji/ggs013CrossRefGoogle Scholar
  20. He, X., Tromp, J., 1996. Normal-Mode Constraints on the Structure of the Earth. Journal of Geophysical Research: Solid Earth, 101(B9): 20053–20082. https://doi.org/10.1029/96jb01783CrossRefGoogle Scholar
  21. Irving, J. C. E., Deuss, A., Andrews, J., 2008. Wide-Band Coupling of Earth’s Normal Modes due to Anisotropic Inner Core Structure. Geophysical Journal International, 174(3): 919–929. https://doi.org/10.1111/j.1365-246x.2008.03824.xCrossRefGoogle Scholar
  22. Kennett, B. L. N., 1998. On the Density Distribution within the Earth. Geophysical Journal International, 132(2): 374–382. https://doi.org/10.1046/j.1365-246x.1998.00451.xCrossRefGoogle Scholar
  23. Laske, G., Widmer-Schnidrig, R., 2015. Theory and Observations: Normal Mode and Surface Wave Observations. Treatise on Geophysics, 2015: 117–167CrossRefGoogle Scholar
  24. Li, X. D., Giardini, D., Woodhouses, J. H., 1991. Large-Scale Three-Dimensional Even-Degree Structure of the Earth from Splitting of Long-Period Normal Modes. Journal of Geophysical Research, 96(B1): 551–577. https://doi.org/10.1029/90jb02009CrossRefGoogle Scholar
  25. Mäkinen, A. M., Deuss, A., Redfern, S. A. T., 2014. Anisotropy of Earth’s Inner Core Intrinsic Attenuation from Seismic Normal Mode Models. Earth and Planetary Science Letters, 404: 354–364. https://doi.org/10.13039/501100000781CrossRefGoogle Scholar
  26. Masters, G., Gilbert, F., 1981. Structure of the Inner Core Inferred from Observations of Its Spheroidal Shear Modes. Geophysical Research Letters, 8(6): 569–571. https://doi.org/10.1029/gl008i006p00569CrossRefGoogle Scholar
  27. Masters, G., Gubbins, D., 2003. On the Resolution of Density within the Earth. Physics of the Earth and Planetary Interiors, 140(1/2/3): 159–167. https://doi.org/10.1016/j.pepi.2003.07.008CrossRefGoogle Scholar
  28. Masters, G., Laske, G., Gilbert, F., 2000a. Autoregressive Estimation of the Splitting Matrix of Free-Oscillation Multiplets. Geophysical Journal International, 141(1): 25–42. https://doi.org/10.1046/j.1365-246x.2000.00058.xCrossRefGoogle Scholar
  29. Masters, G., Laske, G., Gilbert, F., 2000b. Matrix Autoregressive Analysis of Free-Oscillation Coupling and Splitting. Geophysical Journal International, 143(2): 478–489. https://doi.org/10.1046/j.1365-246x.2000.01261.xCrossRefGoogle Scholar
  30. Morelli, A., Dziewonski, A. M., Woodhouse, J. H., 1986. Anisotropy of the Inner Core Inferred from PKIKP Travel Times. Geophysical Research Letters, 13(13): 1545–1548. https://doi.org/10.1029/gl013i013p01545CrossRefGoogle Scholar
  31. Nyman, D., 1975. Stacking and Stripping for Normal Mode Eigenfrequencies. Geophysical Journal International, 41(2): 271–303. https://doi.org/10.1111/j.1365-246x.1975.tb04153.xCrossRefGoogle Scholar
  32. Okal, E. A., Stein, S., 2009. Observations of Ultra-Long Period Normal Modes from the 2004 Sumatra-Andaman Earthquake. Physics of the Earth and Planetary Interiors, 175(1/2): 53–62. https://doi.org/10.1016/j.pepi.2009.03.002CrossRefGoogle Scholar
  33. Park, J., 2005. Earth’s Free Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake. Science, 308(5725): 1139–1144. https://doi.org/10.1126/science.1112305CrossRefGoogle Scholar
  34. Resovsky, J. S., Ritzwoller, M. H., 1995. Constraining Odd-Degree Earth Structure with Coupled Free-Oscillations. Geophysical Research Letters, 22(16): 2301–2304. https://doi.org/10.1029/95gl01996CrossRefGoogle Scholar
  35. Resovsky, J. S., Ritzwoller, M. H., 1998. New and Refined Constraints on Three-Dimensional Earth Structure from Normal Modes below 3 MHz. Journal of Geophysical Research: Solid Earth, 103(B1): 783–810. https://doi.org/10.1029/97jb02482CrossRefGoogle Scholar
  36. Ritzwoller, M., Masters, G., Gilbert, F., 1986. Observations of Anomalous Splitting and Their Interpretation in Terms of Aspherical Structure. Journal of Geophysical Research, 91(B10): 10203. https://doi.org/10.1029/jb091ib10p10203CrossRefGoogle Scholar
  37. Ritzwoller, M., Masters, G., Gilbert, F., 1988. Constraining Aspherical Structure with Low-Degree Interaction Coefficients: Application to Uncoupled Multiplets. Journal of Geophysical Research, 93(B6): 6369. https://doi.org/10.1029/jb093ib06p06369CrossRefGoogle Scholar
  38. Rogister, Y., 2003. Splitting of Seismic-Free Oscillations and of the Slichter Triplet Using the Normal Mode Theory of a Rotating, Ellipsoidal Earth. Physics of the Earth and Planetary Interiors, 140(1/2/3): 169–182. https://doi.org/10.1016/j.pepi.2003.08.002CrossRefGoogle Scholar
  39. Roult, G., Rosat, S., Clévédé, E., et al., 2006. New Determinations of Q Quality Factors and Eigenfrequencies for the Whole Set of Singlets of the Earth’s Normal Modes 0S0, 0S2, 0S3 and 2S1 Using Superconducting Gravimeter Data from the GGP Network. Journal of Geodynamics, 41(1/2/3): 345–357. https://doi.org/10.1016/j.jog.2005.08.020CrossRefGoogle Scholar
  40. Shen, W. B., Ding H., 2014. Observation of Spheroidal Normal Mode Multiplets below 1 MHz Using Ensemble Empirical Mode Decomposition. Geophysical Journal International, 196(3): 1631–1642. https://doi.org/10.1093/gji/ggt468CrossRefGoogle Scholar
  41. Shen, W. B., Ding, H., 2013. Detection of the Inner Core Translational Triplet Using Superconducting Gravimetric Observations. Journal of Earth Science, 24(5): 725–735. https://doi.org/10.1007/s12583-013-0369-3CrossRefGoogle Scholar
  42. Shen, W. B., Luan, W., 2015. Feasibility Analysis of Searching for the Slichter Triplet in Superconducting Gravimeter Records. Geodesy and Geodynamics, 6(5): 307–315. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  43. Stein, S., Okal, E. A., 2007. Ultralong Period Seismic Study of the December 2004 Indian Ocean Earthquake and Implications for Regional Tectonics and the Subduction Process. Bulletin of the Seismological Society of America, 97(1A): S279–S295. https://doi.org/10.1785/0120050617CrossRefGoogle Scholar
  44. Tromp, J., 1993. Support for Anisotropy of the Earth’s Inner Core from Free Oscillations. Nature, 366(6456): 678–681. https://doi.org/10.1038/366678a0CrossRefGoogle Scholar
  45. Tromp, J., 1995a. Normal-Mode Splitting Observations from the Great 1994 Bolivia and Kuril Islands Earthquakes: Constraints on the Structure of the Mantle and Inner Core. GSA Today, 5(7): 137–151Google Scholar
  46. Tromp, J., 1995b. Normal-Mode Splitting due to Inner-Core Anisotropy. Geophysical Journal International, 121(3): 963–968. https://doi.org/10.1111/j.1365-246x.1995.tb06451.xCrossRefGoogle Scholar
  47. Van Camp, M., Vauterin, P., 2005. Tsoft: Graphical and Interactive Software for the Analysis of Time Series and Earth Tides. Computers & Geosciences, 31(5): 631–640. https://doi.org/10.1016/j.cageo.2004.11.015CrossRefGoogle Scholar
  48. Wenzel, H. G., 1994. PRETERNA. A Preprocessor for Digitally Recorded Tidal Data. Marées Terrestres, 118: 8722–8734Google Scholar
  49. Wenzel, H. G., 1996. The Nanogal Software: Earth Tide Data Processing Package ETERNA 3.30. Bull. Inf. Marées Terrestres., 124: 9425–9439Google Scholar
  50. Widmer-Schnidrig, R., 1991. The Large-Scale Structure of the Deep Earth as Constrained by Free Oscillation Observations: [Dissertation]. University of California, San DiegoGoogle Scholar
  51. Widmer-Schnidrig, R., Masters, G., Gilbert, F., 1992. Observably Split Multiplets-Data Analysis and Interpretation in Terms of Large-Scale Aspherical Structure. Geophysical Journal International, 111(3): 559–576. https://doi.org/10.1111/j.1365-246x.1992.tb02112.xCrossRefGoogle Scholar
  52. Woodhouse, J. H., 1980. The Coupling and Attenuation of nearly Resonant Multiplets in the Earth’s Free Oscillation Spectrum. Geophysical Journal International, 61(2): 261–283. https://doi.org/10.1111/j.1365-246x.1980.tb04317.xCrossRefGoogle Scholar
  53. Woodhouse, J. H., Giardini, D., Li, X. D., 1986. Evidence for Inner Core Anisotropy from Free Oscillations. Geophysical Research Letters, 13(13): 1549–1552. https://doi.org/10.1029/gl013i013p01549CrossRefGoogle Scholar
  54. Zürn, W., Laske, G., Widmer-Schnidrig, R., et al., 2000. Observation of Coriolis Coupled Modes below 1 MHz. Geophysical Journal International, 143(1): 113–118. https://doi.org/10.1046/j.1365-246x.2000.00220.xCrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Geodesy and Geomatics/Key Laboratory of the Geospace Environment and GeodesyWuhan UniversityWuhanChina
  2. 2.State Key Laboratory for Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina

Personalised recommendations