Journal of Earth Science

, Volume 29, Issue 6, pp 1335–1339 | Cite as

On the Fluid Dependence of Seismic Anisotropy: Beyond Biot-Gassmann

  • Leon ThomsenEmail author
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs


This work addresses the question of the fluid dependence of the non-dimensional parameters of seismic anisotropy. It extends the classic theory of the fluid-dependence of elasticity, and applies the approximation of weak seismic anisotropy. The analysis shows that reliance upon the classic theory leads to oversimplified conclusions. Extending the classic theory introduces new parameters (which must be experimentally determined) into the conclusions, making their application in the field context highly problematic.

Key words

Biot Gassmann incompressibility fluids fluid substitution pore compressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I appreciate many tough discussions with J. Berryman (LBNL), and B. Gurevich (Curtin), and a tough review by I. Tsvankin (CSM) of a different manuscript. The final publication is available at Springer via

References Cited

  1. Backus, G. E., 1962. Long-Wave Elastic Anisotropy Produced by Horizontal Layering. Journal of Geophysical Research, 67(11): 4427–4440. Scholar
  2. Biot, M. A., 1941. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2): 155–164. Scholar
  3. Brown, R. J. S., Korringa, J., 1975. On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid. Geophysics, 40(4): 608–616. Scholar
  4. Collet, O., Gurevich, B., 2013. Fluid Dependence of Anisotropy Parameters in Weakly Anisotropic Porous Media. Geophysics, 78(5): WC137–WC145. Scholar
  5. Gassmann, F., 1951. Űber die Elastizität Poroser Medien, Mitteilungen Inst. Geophysik (Zurich), 17: l–23. Translated and Reprinted as: On elasticity of Porous Media, in Classics of Elastic Wave Theory. Pelissier, M. A., ed., Soc. Expl. Geoph., TulsaGoogle Scholar
  6. Hart, D. J., Wang, H. F., 2010. Variation of Unjacketed Pore Compressibility Using Gassmann’s Equation and an Overdetermined Set of Volumetric Poroelastic Measurements. Geophysics, 75(1): N9–N18. Scholar
  7. Thomsen, L., 1986. Weak Elastic Anisotropy. Geophysics, 51(10): 1954–1966. Scholar
  8. Thomsen, L., 2010. On the Fluid Dependence of Rock Compressibility: Biot-Gassmann Refined. Soc. Expl. Geoph. Conv. Expnd. Absts., 80: 2447–2451Google Scholar
  9. Thomsen, L., 2012. On the Fluid Dependence of the Parameters of Anisotropy. Soc. Expl. Geoph. Conv. Expnd. Absts., 82, Scholar
  10. Thomsen, L., 2017. On the Fluid Dependence of Rock Compressibility: A Reconsideration, submitted to GEOPHYSICS, 2017.Google Scholar
  11. Tsvankin, I., Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization. Soc. Expl. Geoph., Tulsa. ISBN:978-1560802280CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Houston, Delta GeophysicsHoustonUSA

Personalised recommendations