Advertisement

Journal of Earth Science

, Volume 27, Issue 2, pp 170–179 | Cite as

Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform

  • Wenlang Qiao
  • Xianguo Lang
  • Yongbo Peng
  • Kaiyuan Jiang
  • Wu Chen
  • Kangjun Huang
  • Bing ShenEmail author
Article

Abstract

Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate (PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS (δ34SPAS) ranges from -1.16‰ to +24.48‰ (mean=+8.19‰, n=11), and oxygen isotopic value (δ18OPAS) varies between -5.3‰ and +26.3‰ (mean=+7.0‰, n=8). Most phosphorite nodules have low δ34SPAS and low δ18OPAS values, suggesting PAS mainly derived from anaerobic oxidation of H2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca2+ diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.

Key Words

phosphorite nodules Niutitang Formation phosphorite associated sulfate sulfur isotope oxygen isotope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antler, G., Turchyn, A. V., Rennie, V., et al., 2013. Coupled Sulfur and Oxygen Isotope Insight into Bacterial Sulfate Reduction in the Natural Environment. Geochimica et Cosmochimica Acta, 118(0): 98–117CrossRefGoogle Scholar
  2. Böttcher, M. E., Thamdrup, B., 2001. Anaerobic Sulfide Oxidation and Stable Isotope Fractionation Associated with Bacterial Sulfur Disproportionation in the Presence of MnO2. Geochimica et Cosmochimica Acta, 65(10): 1573–1581CrossRefGoogle Scholar
  3. Balci, N., Shanks Iii, W. C., Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796–3811CrossRefGoogle Scholar
  4. Bao, H., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304–309CrossRefGoogle Scholar
  5. Bao, Z. X., Wan, R. J.,Bao, J. M., 2002. Vanadium Deposits of Black Shale in Upper Yangtze Platform. Yunnan Geology, 21: 175–182Google Scholar
  6. Bohlke, J. K., Mroczkowski, S. J., Coplen, T. B., 2003. Oxygen isotopes In Nitrate: New Reference Materials for O-18: O-17: O-16 Measurements and Observations on Nitrate-Water Equilibration. Rapid Communications in Mass Spectrometry, 17: 1835–1846CrossRefGoogle Scholar
  7. Brand, W. A., Coplen, T. B., Aerts-Bijma, A. T., et al., 2009. Comprehensive inter-Laboratory Calibration of Reference Materials for Delta O-18 versus VSMOW Using Various On-Line High-Temperature Conversion Techniques. Rapid Communications in Mass Spectrometry, 23: 999–1019CrossRefGoogle Scholar
  8. Brimblecombe, P., Heinrich, D. H.,Karl, K. T., 2003. The Global Sulfur Cycle. Treatise on Geochemistry, Pergamon: Oxford. 645–682Google Scholar
  9. Bruland, K. W.,Lohan, M. C., 2003. Controls of Trace Metals in Seawater. In: Holland, H. D., Turekian, K. K., eds. Treatise on Geochemistry, Elsevier, 6: Oxford, Pergamon. 23–47CrossRefGoogle Scholar
  10. Brunner, B., Bernascon, S. M., 2005. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759–4771CrossRefGoogle Scholar
  11. Brunner, B., Bernasconi, S. M., Kleikemper, J., et al., 2005. A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 69(20): 4773–4785CrossRefGoogle Scholar
  12. Canfield, D. E., 2004. The Evolution of the Earth Surface Sulfur Reservoir. Am. J. Sci., 304: 839–861CrossRefGoogle Scholar
  13. Canfield, D. E.,Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20): 8123–8127CrossRefGoogle Scholar
  14. Chen, D., Zhou, X., Fu, Y., et al., 2015. New U–Pb Zircon Ages of the Ediacaran–Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62–68CrossRefGoogle Scholar
  15. Cheng, M., Hu, X., Sun, J., et al., 2012. Overview on the Cambrian Black Shale-Hosted Vanadium Deposit in Hunan. Contributions to Geology and Mineral Resources Research, 27: 410–420Google Scholar
  16. Farquhar, J., Canfield, D. E., Masterson, A., et al., 2008. Sulfur and Oxygen Isotope Study of Sulfate Reduction in Experiments with Natural Populations from Fællestrand, Denmark. Geochimica et Cosmochimica Acta, 72(12): 2805–2821CrossRefGoogle Scholar
  17. Feng, D., Roberts, H. H., 2011. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 309(1–2): 89–99Google Scholar
  18. Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529–521 Ma) Yangtze Platform, South China. Precambrian Research, 246(0): 123–133Google Scholar
  19. Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744–747CrossRefGoogle Scholar
  20. Foellmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth Science Reviews, 40: 55–124CrossRefGoogle Scholar
  21. Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205–210Google Scholar
  22. Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): this issueGoogle Scholar
  23. Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80–83CrossRefGoogle Scholar
  24. Glenn, C. R., Follmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747–788Google Scholar
  25. Goldberg, T., Poulton, S. W., Strauss, H., 2005. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Research, 137: 223–241CrossRefGoogle Scholar
  26. Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's History. Nature Geosci, 4(5): 285–292CrossRefGoogle Scholar
  27. Guo, Q., Strauss, H., Zhao, Y., et al., 2014. Reconstructing Marine Redox Conditions for the Transition between Cambrian Series 2 and Cambrian Series 3, Kaili Area, Yangtze Platform: Evidence from Biogenic Sulfur and Degree of Pyritization. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 144–153CrossRefGoogle Scholar
  28. Habicht, K. S., Canfield, D. E., 1997. Sulfur Isotope Fractionation during Bacterial Sulfate Reduction in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 61: 5351–5361CrossRefGoogle Scholar
  29. Hu, J., Xiao, S.,Yuan, X., 2002. Articulated Sponges from the Early Cambrian Hetang Formation in South China. GSA Annual Meeting Abstracts with Programs, 34: 425Google Scholar
  30. Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: the Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864–3879CrossRefGoogle Scholar
  31. Jørgensen, B. B., Fossing, H., Wirsen, C. O., et al., 1991. Sulfide Oxidation in the Anoxic Black Sea Chemocline. Deep Sea Research Part A. Oceanographic Research Papers, 38, Supplement 2(0): S1083–S1103Google Scholar
  32. Jiang, S. Y., Yang, J. H., Ling, H. F., et al., 2007. Extreme Enrichment of Polymetallic Ni–Mo–PGE–Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 217–228CrossRefGoogle Scholar
  33. Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3–4): 584–604CrossRefGoogle Scholar
  34. Jiang, S. Y., Zhao, K. D., Li, L., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater: Comment and Reply: Comment. Geology, 35(1): e158–e159CrossRefGoogle Scholar
  35. Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5–E6CrossRefGoogle Scholar
  36. Jiang, S., Yang, J., Ling, H., et al., 2003. Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13: 788–794CrossRefGoogle Scholar
  37. Jin, C., Li, C., Peng, X., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 57(4): 579–591CrossRefGoogle Scholar
  38. Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35: 403–406CrossRefGoogle Scholar
  39. Li, C., Cheng, M., Algeo, T., et al., 2015. A Theoretical Prediction of Chemical Zonation in Early Oceans (520 Ma). Science China Earth Sciences, 58(11): 1901–1909CrossRefGoogle Scholar
  40. Luther, G. W., Findlay, A. J., MacDonald, D. J., et al., 2011. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Frontiers in Microbiology, 2Google Scholar
  41. Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al., 2008. Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 247: 124–132CrossRefGoogle Scholar
  42. Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355–384CrossRefGoogle Scholar
  43. Mazumdar, A., Goldberg, T.,Strauss, H., 2008. Abiotic Oxidation of Pyrite by Fe(III) in Acidic Media and its Implications for Sulfur Isotope Measurements of Lattice-Bound Sulfate in Sediments. Chemical Geology, 253(1–2): 30–37CrossRefGoogle Scholar
  44. McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105: 3197–3202CrossRefGoogle Scholar
  45. Moses, C. O., Kirk Nordstrom, D., Herman, J. S., et al., 1987. Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron. Geochimica et Cosmochimica Acta, 51(6): 1561–1571CrossRefGoogle Scholar
  46. Moses, C. O., Herman, J. S., 1991. Pyrite Oxidation at Circumneutral pH. Geochimica et Cosmochimica Acta, 55(2): 471–482CrossRefGoogle Scholar
  47. Och, L. M., Shields Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1–4): 26–57CrossRefGoogle Scholar
  48. Och, L. M., Shields Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166–189CrossRefGoogle Scholar
  49. Orberger, B., Vymazalova, A., Wagner, C., et al., 2006. Origin of MoSC Phases in Lower Cambrian Black Shales (Southern China). Geochimica et Cosmochimica Acta, 70(18, Supplement): A462CrossRefGoogle Scholar
  50. Peng, Y., Bao, H., Pratt, L. M., et al., 2014. Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 42(9): 815–818CrossRefGoogle Scholar
  51. Pi, D. H., Liu, C. Q., Shields Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218–229CrossRefGoogle Scholar
  52. Rasmussen, B., Buick, R.,Taylor, W. R., 1998. Removal of Oceanic REE by Authigenic Precipitation of Phosphatic Minerals. Earth and Planetary Science Letters, 164(1–2): 135–149CrossRefGoogle Scholar
  53. Rickard, D., 1997. Kinetics Of Pyrite Formation by the H2S Oxidation of Iron (II) Monosulfide in Aqueous Solutions Between 25 And 125 °C: The Rate Equation. Geochimica et Cosmochimica Acta, 61(1): 115–134CrossRefGoogle Scholar
  54. Ruttenberg, K. C., Heinrich, D. H., Karl, K. T., 2003. The Global Phosphorus Cycle. Treatise on Geochemistry, Pergamon: Oxford. 585–643CrossRefGoogle Scholar
  55. Schippers, A., Jørgensen, B. B., 2001. Oxidation of Pyrite and Iron Sulfide by Manganese Dioxide in Marine Sediments. Geochimica et Cosmochimica Acta, 65(6): 915–922CrossRefGoogle Scholar
  56. Shields, G., Kimura, H., Yang, J., et al., 2004. Sulphur Isotopic Evolution of Neoproterozoic-Cambrian Seawater: New Francolite-Bound Sulphate D34s Data and a Critical Appraisal of the Existing Record. Chemical Geology, 204: 163–182CrossRefGoogle Scholar
  57. Shu, D., 2008. Cambrian explosion: Birth of Tree of Animals. Gondwana Research, 14(1–2): 219–240CrossRefGoogle Scholar
  58. Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451–454CrossRefGoogle Scholar
  59. Su, D. Y., Wu, Z. C., Zhang, M. Q., et al., 2012. Geological Characteristics and Metallogenic Prediction of Vanadium Deposit in Northeast Guizhou. Guizhou Geology, 29: 173–182Google Scholar
  60. Tarhan, L. G., Droser, M. L., 2014. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399(0): 310–322CrossRefGoogle Scholar
  61. Van Stempvoort, D. R.,Krouse, H. R., 1994. Controls of Sulfate d18O: A General Model and Application to Specific Environments. In: Alpers, C. N.,Blowes, D. W., eds. Environmental Geochemistry of Sulfide Oxidation, American Chemical Society: Washington, D.C. 446–480Google Scholar
  62. Wang, J., Chen, D., Yan, D., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306–307: 129–138CrossRefGoogle Scholar
  63. Wang, X., Shi, X., Jiang, G., et al., 2012. New U–Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asian Earth Sciences, 48(0): 1–8CrossRefGoogle Scholar
  64. Xiao, S., Hu, J., Yuan, X., et al., 2005. Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for the Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1–2): 89–117CrossRefGoogle Scholar
  65. Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 106(3): 511–522CrossRefGoogle Scholar
  66. Xu, L., Lehmann, B.,Mao, J., 2013. Seawater Contribution to Polymetallic Ni–Mo–PGE–Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66–84CrossRefGoogle Scholar
  67. Yang, J. H., Jiang, S. Y., Ling, H. F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14: 152–157CrossRefGoogle Scholar
  68. Yang, R., Zhu, L., Gao, H., et al., 2005. A Study on Charateristics of the Hydrothermal Vent and Relating Biota at the Cambrian Bottom in Songlin, Zunyi County, Guizhou Province. Geological Review, 51: 481–492Google Scholar
  69. Yuan, X., Xiao, S., Parsley, R. L., et al., 2002. Towering Sponges in an Early Cambrian Lagerstätte: Disparity Between Non-Bilaterian and Bilaterian Epifaunal Tiers during the Neoproterozoic-Cambrian Transition. Geology, 30(4): 363–366CrossRefGoogle Scholar
  70. Zhou, C., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3–4): 279–286CrossRefGoogle Scholar
  71. Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014. Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 132–143CrossRefGoogle Scholar
  72. Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13: 351–960Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wenlang Qiao
    • 1
  • Xianguo Lang
    • 2
  • Yongbo Peng
    • 3
  • Kaiyuan Jiang
    • 1
  • Wu Chen
    • 1
  • Kangjun Huang
    • 2
  • Bing Shen
    • 2
    Email author
  1. 1.Guizhou Geological SurveyGuiyang, Guizhou ProvinceChina
  2. 2.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE & School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Department of Geology and GeophysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations