Skip to main content
Log in

Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

It is generally considered that a significant change in oceanic redox conditions occurred during the Ediacaran–Cambrian transition. However, there are currently two major conflicting views on the degree of oxygenation of deep water (oxic vs. ferruginous) during this interval. To date, the oxygenation conditions of the Early Cambrian ocean have not been well constrained. The oxygenation magnitude and mechanism of the Early Cambrian ocean could be critical to the significant biological evolution of the “Cambrian Explosion”. To constrain the Early Cambrian oceanic redox environment, we conducted an integrated study on iron and sulfur isotopes and redox-sensitive elements (Mo, U, and V) of Lower Cambrian phosphorite deposits from two shallow sections (Meishucun and Gezhongwu) and a deeper water section (Zunyi) from the Yangtze Platform, South China. The near zero δ56Fe values from the two shallow sections studied here reflect oxic conditions in the lower phosphorite deposition. An obvious positive shift in δ56Fe and redox-sensitive element content was observed in the middle parts of the two shallow water sections, which might reflect loss of light iron by dissimilatory iron reduction during early diagenesis under suboxic shallow water in the platform. However, the highly positive δ56Fe values in the deep section could reflect a lower oxidation degree of dissolved Fe(II) under anoxic deep water. The data suggest redox-stratified oceanic conditions during the Early Cambrian, in which completely oxygenated shallow water (platform) coexisted with anoxic deep water (slope). We propose that prolonged upwelling of dissolved organic carbon (DOC)-, Fe(II)- and phosphorus-rich anoxic deep water in a redox-stratified ocean could have increased exchange with the open ocean, resulting in major phosphorite deposition in oxic-suboxic conditions. The progressive oxygenation of the ocean may have facilitated the Early Cambrian biotic diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbar, A. D., Jarzecki, A. A., Spiro, T. G., 2005. Theoretical Investigation of Iron Isotope Fractionation between Fe(H2O)6 3+ and Fe(H2O)6 2+: Implications for Iron Stable Isotope Geochemistry. Geochimica et Cosmochimica Acta, 69(4): 825–837. DOI: 10.1016/jgca. 2004.06.012.

    Article  Google Scholar 

  • Beard, B.L., Handler, R.M., Scherer, M.M., et al., 2010. Iron Isotope Fractionation between Aqueous Ferrous Iron and Goethite. Earth and Planetary Science Letters, 295(1–2), 241–250. DOI: 10.1016/jepsl.2010.04.006.

    Article  Google Scholar 

  • Beard, M. D., Johnson, C. M., Skulan, J. L., et al., 2003. Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe. Chemical Geology, 195: 87–117. DOI: 10.1016/s0009-2541(02)00390-X.

    Article  Google Scholar 

  • Bradley, A. S., Leavitt,W. D., Schmidt,M., et al., 2015. Patterns of sulfur isotope fractionation during Microbial Sulfate Reduction. Geobiology. DOI: 10.1111/gbi.12149

    Google Scholar 

  • Brasier, M. D., Magaritz, M., Corfield, R., et al., 1990. The Carbon- and Oxygen-Isotopic Record of the Precambrian- Cambrian Boundary Interval in China and Iran and Their Correlation. Geological Magazine, 127: 319–332. DOI: 10.1017/S0016756800014886.

    Article  Google Scholar 

  • Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7(1): 1–7. DOI: 10.1111/j.1472-4669.2009.0018x.

    Article  Google Scholar 

  • Canfield, D. E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33: 1–36. DOI: 10.1146/annurexearth.33.09220 3.122711.

    Article  Google Scholar 

  • Canfield, D. E., Farquhar, J., Zerkle, A. L., 2010. High Isotope Fractionations during Sulfate Reduction in a Low-Sulfate Euxinic Ocean Analog. Geology, 38(5): 415–418. DOI:10.1130/G3072 3.1.

    Article  Google Scholar 

  • Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321(5891): 949–952. DOI: 10.1126/science.1154499.

    Article  Google Scholar 

  • Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92–95. DOI: 10.1126/science. 1135013.

    Article  Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149–155. DOI: 10.1016/0009- 2541(86)90078-1.

    Article  Google Scholar 

  • Chen, Y. Q., Jiang, S. Y., Ling, H. F., et al., 2003, Pb-Pb Isotope Dating of Black Shales from the Lower Cambrian Niutitang Formation, Guizhou Province, South China. Progress in Natural Sciences, 13(10): 771–776. DOI: 10.1080/10020070312331344410.

    Article  Google Scholar 

  • Claypool, G. E., Holster, W. T., Kaplan, I. R., et al., 1980. The Age Curves of Sulphur and Oxygen Isotopes in Marine Sulphate and Their Mutual Interpretation. Chemical Geology, 28: 199–260. DOI:10.1016/0009-2541(80)90047-9.

    Article  Google Scholar 

  • Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorite and Skeletal Evolution at the Ediacaran Cambrian Boundary. Nature, 308(5956): 231–236. DOI: 10.1038/308231a0.

    Article  Google Scholar 

  • Craddock, P. R., Dauphas, N., 2011a. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1): 101–123. DOI: 10.1111/j.1751- 908X.2010.00085x.

    Article  Google Scholar 

  • Craddock, P. R., Dauphas, N., 2011b. Iron and Carbon Isotope Evidence for Microbial Iron Respiration throughout the Archean. Earth and Planetary Science Letters, 303(1–2): 121–132. DOI:10.1016/jepsl.2010.12.045.

    Article  Google Scholar 

  • Croal, L. R., Johnson, C. M., Beard, B. L., et al., 2004. Iron Isotope Fractionation by Fe-Oxidizing Photoautotrophic Bacteria. Geochimica et Cosmochimica Acta, 68(6): 1227–1242. DOI:10.1016/jgca.2003.09.011.

    Article  Google Scholar 

  • Czaja, A.D., Johnson, C.M., Beard, B.L., et al., 2010. Iron and Carbon Isotope Evidence for Ecosystem and Environmental Diversity in the ~2.7 to 2.5Ga Hamersley Province, Western Australia. Earth and Planetary Science Letters, 292: 170–180. DOI:10.1016/jepsl.2010.01.032.

    Article  Google Scholar 

  • Dahl T. W., Boyle R. A., Canfield D. E., et al., 2014. Uranium Isotopes Distinguish Two Geochemically Distinct Stages during the Later Cambrian SPICE Event. Earth and Planetary Science Letters, 401, 313–326. DOI:10.1016/jepsl.2014.05.043.

  • Eckert, S., Brumsacl, H. J., Severmann, S., et al., 2013. Establishment of Eucinix Conditions in the Holocene Black Sea. Geology, 41(4): 431–434. DOI:10.1130/G33826.1.

    Article  Google Scholar 

  • Feng, L.J., Li, C., Huang, J., et al., 2010. A sulfate control on marinemid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform,South China. Precambrian Research, 246: 123–133. DOI:10.1016/jprecamres. 2014.03.002.

    Google Scholar 

  • Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747. DOI:10.1038/nature05345.

    Article  Google Scholar 

  • Frierdich, A.J., Beard, B.L., Reddy, T.R., et al., 2014a. Iron Isotope Fractionation between Aqueous Fe(II) and Goethite Revisited: New Insights based on a Multi-Direction approach to Equilibrium and Isotopic Exchange Rate Modification. Geochimica et Cosmochimica Acta, 139: 383–398. DOI:10.1016/jgca.2014.05.001.

    Article  Google Scholar 

  • Frierdich, A.J., Beard, B.L., Scherer, M.M., et al., 2014b. Determination of the Fe(II)aq–Magnetite Equilibrium Iron Isotope Fractionation Factor Using the Three-Isotope Method and a Multi-Direction approach to Equilibrium. Earth and Planetary Science Letters, 391: 77–86. DOI:10.1016/jepsl.2014.01.032.

    Article  Google Scholar 

  • Frost, C. D., von Blanckenburg, F., Schoenberg, R., et al., 2007. Preservation of Fe Isotope Heterogeneities during Diagenesis and Metamorphism of Banded Iron-Formation. Contributions to Mineralogy and Petrology, 153(2): 211–235. DOI:10.1007/s00410-006-0141-0.

    Article  Google Scholar 

  • Goldberg, T., Strauss, H., Guo, Q., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 175–193. DOI:10.1016/j. palaeo.2007.03.015.

    Article  Google Scholar 

  • Gradstein, F., Ogg, J., 2004. Geologic Time Scale 2004–Why, How, and Where Next. Lethaia, 37(2): 175–181. DOI:10.1080/00241160410006483.

    Article  Google Scholar 

  • Guo, Q. J., Shields, G. A., Liu, C. Q.,et al., 2007. Trace Element Chemo Stratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 194–216. DOI:10.1016/jpalaeo.2007.03.016.

    Article  Google Scholar 

  • Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602), 2372–2374. DOI:10.1126/science.1078265.

    Article  Google Scholar 

  • Heimann, A., Johnson, C.M., Beard, B.L., et al., 2010. Fe, C and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5Ga Marine Environments. Earth and Planetary Science Letters, 294(1–2): 8–18. DOI:10.1016/jepsl.2010.02.015.

    Article  Google Scholar 

  • Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global-Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14(1–2): 193–208. DOI:10.1016/jgr.2007.10.008.

    Article  Google Scholar 

  • Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317(2): 96–110. DOI:10.1016/jepsl.2011.11.018.

    Article  Google Scholar 

  • Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian ocean anoxia in South China. Nature, 459(7248): E5–E6. DOI:10.1038/nature08048.

    Article  Google Scholar 

  • Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007, Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244: 584–604. DOI:10.1016/jchemgeo.2007.07.010.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Klein, C., et al., 2008, Iron Isotopes Constrain Biologic and Abiologic Processes in Banded Iron Formation Genesis. Geochimica et Cosmochimica Acta, 72(1): 151–169. DOI:10.1016/jgca.2007.10.013.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Roden, E. E., et al., 2004. Isotopic Constraints on Biogeochemical Cycling of Fe. Reviews in Mineralogy and Geochemistry, 55: 360–408. DOI: 10.2138/gsrmg.55.1.359.

    Google Scholar 

  • Johnson, C. M., Roden, E. E., Welch, S. A., et al., 2005. Experimental Constraints on Fe Isotope Fractionation during Magnetite and Fe Carbonate Formation Coupled to Dissimilatory Hydrous Ferric Oxide Reduction. Geochimica et Cosmochimica Acta, 69(4), 963–993. DOI:10.1016/jgca.2004.06.043.

    Article  Google Scholar 

  • Knoll, A. H., Carroll, S. B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284(5423): 2129–2137. DOI:10.1126/science.284.5423.2129.

    Article  Google Scholar 

  • Komiya, T., Hirata, T., Kitajima, K., et al., 2008. Evolution of the Composition of Seawater through Geologic Time, and Its Influence on Evolution of Life. Gondwana Research, 14(1–2): 159–174. DOI:10.1016/jgr.2007.10.006.

    Article  Google Scholar 

  • Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451(7176): 277–278. DOI:10.1038/nature06587.

    Article  Google Scholar 

  • Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. DOI:10.1126/science.1182369.

    Article  Google Scholar 

  • Li, D., Ling, H. F., Shields-Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran–Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225, 128–147. DOI:10.1016/jprecamres.2012.01.002.

    Article  Google Scholar 

  • Li, W. Q., Czaja, A. D., Van Kranendonk, M. J.,et al., 2013. An Anoxic, Fe-Rich, U-Poor Ocean 3.46 Billion Years Ago. Geochimica et Cosmochimica Acta, 120: 65–79. DOI:10.1016/jgca.2013.06.033.

    Article  Google Scholar 

  • Loyd, S. J., Marenco, P. J., Hagadorn, J. W., et al., 2012. Sustained Low Marine Sulfate Concentrations from the Neo-Proterozoic to the Cambrian: Insights from Carbonates of Northwestern Mexicoand Eastern California. Earth and Planetary Science Letters, 339(4): 79–94. DOI:10.1016/jepsl.2012.05.032.

    Article  Google Scholar 

  • Luo, H., Jiang, Z., Wu, X., et al., 1984. The Sinian-Cambrian Boundary in Eastern Yunnan China. People’s Publishing House, Yunnan, China. 154.

    Google Scholar 

  • Marshall, C. R., 2006. Explaining the Cambrian “Explosion” of Animals. Annual Review of Earth and Planetary Sciences, 34: 355–384

    Article  Google Scholar 

  • Morford, J. L., Emerson, S. R., Breckel, E. J., et al., 2005. Diagenesis of Oxyanions (V, U, Re, and Mo) in Pore Waters and Sediments from a Continental Margin. Geochimica et Cosmochimica Acta, 69(21): 5021–5032. DOI:10.1016/jgca.2005.05.015.

    Article  Google Scholar 

  • Nelson, G. J., Pufahl, P. K., Hiatt, E. E., 2010. Paleoceanographic Constraints on Precambrian Phosphorite Accumulation, Baraga Group, Michigan, USA. Sedimentary Geology, 226(1–4): 9–21. DOI:10.1016/jsedgeo.2010.02.001.

    Article  Google Scholar 

  • Nie, W. M, Ma, D. S., Pan, J. Y., et al., 2006. d13C Excursions of Phosphorite-Bearing Rocks in Peoproterozoic-Early Cambrian Interval in Guizhou, South China: Implications for Palaeoceanic Evolutions. Journal of Nanjing University (Natural Sciences), 42: 257–268 (in Chinese with English Abstract)

    Google Scholar 

  • Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth Science Review, 110(1): 26–57. DOI:10.1016/jearscirev.2011.09.004.

    Article  Google Scholar 

  • Och, L. M., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166–189. DOI:10.1016/jprecamres.2011.10.005.

    Article  Google Scholar 

  • Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Elementgeochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environmentsand Origin of Metal Enrichments. Precambrian Research, 225: 218–229. DOI:10.1016/jprecamres.2011.07.004.

    Article  Google Scholar 

  • Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences, 100(14): 8124–8129. DOI:10.1073/pnas.0832439100.

    Article  Google Scholar 

  • Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546–549. DOI:10.1038/nature11445.

    Article  Google Scholar 

  • Sawaki, Y., Nishizawa, M., Suo, T., et al., 2008. Internal Structures and U-Pb Ages of Zircons from a Tuff Layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 14(1–2): 148–158. DOI:10.1016/jgr.2007.12.003.

    Article  Google Scholar 

  • Scholz, F., Severmann, S., McManus, J., et al., 2014. On the Isotope Composition of Reactive Iron in Marine Sediments: Redox Shuttle Versus Early Diagenesis. Chemical Geology, 389: 48–59. DOI:10.1016/jchemgeo.2014.09.009.

    Article  Google Scholar 

  • Scott, C., Lyons, T.W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 457–460. DOI:10.1038/nature06811.

    Article  Google Scholar 

  • Severmann, S., Johnson, C.M., Beard, B.L., et al., 2006. The Effect of Early Diagenesis on the Fe Isotope Compositions of Porewaters and Authigenic Minerals in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 70(8): 2006–2022. DOI:10.1016/jgca.2006.01.007.

    Article  Google Scholar 

  • Shen, Y. A., Zhao, R., Chu, X. L.,et al., 1998. The Carbon and Sulfur Isotope Signatures in the Precambrian-Cambrian Transition Series of the Yangtze Platform. Precambrian Research, 89(1–2): 77–86. DOI:10.1016/ S0301-9268(97)00081-8.

    Article  Google Scholar 

  • Shi, C. H., 2004. Formation of Phosphorite Deposit,Breakup of Rodinia Supercontinent and Biology Explosion: A Case Study of Weng’an, Kaiyang and Zhjiin Phosphorite Deposits of Guizhou Province. A Dissertation Submitted to Chinese Aeademy of Sciences for a Master Degree. Guiyang (in Chinese with English Abstract)

    Google Scholar 

  • Shi, C. H., Hu, R. Z., 2010. REE Geochemistry of Early Cambrian Phosphorites from Gezhongwu Formation at Zhijin, Guizhou Province, China. Chinese Journal of Geochemistry, 24(2): 166–172

    Google Scholar 

  • Shields, G. A., Strauss, H., Howe, S. S., et al., 1999. Sulphur Isotope Compositions of Sedimentary Phosphorites from the Basal Cambrian of China-Implications for Neoproterozoic-Cambrian Biogeochemical Cycling. Journal of the Geological Society, 156(5): 943–955. DOI:10.1144/gsjgs.156.5.0943.

    Article  Google Scholar 

  • Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1): 29–48. DOI:10.1016/S0009-2541(00)00362-4.

    Article  Google Scholar 

  • Shields-Zhou, G. A., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4–11. DOI:10.1130/GSATG102A.1.

    Article  Google Scholar 

  • Steiner, M., Wallis, E., Erdtmann, B., et al., 2001. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3): 165–191. DOI:10.1016/S0031-0182(01)00208-5.

    Article  Google Scholar 

  • Von Blanckenburg, F., Mamberti, M., Schoenberg, R., et al., 2008. The Iron Isotope Composition of Microbial Carbonate. Chemical Geology, 249(1–2): 113–128. DOI:10.1016/jchemgeo.2007.12.001.

    Article  Google Scholar 

  • Wang, H. Y., Li, C., Hu, C. Y., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883–892 DOI: 10.1007/s12583-016-0650-3.

    Google Scholar 

  • Welch, S. A., Beard, B. L., Johnson, C. M., et al., 2003. Kinetic and Equilibrium Fe Isotope Fractionation between Aqueous Fe and Fe(III). Geochimica et Cosmochimica Acta, 67(22): 4231–4250. DOI:10.1016/S0016-7037 (03)00266-7.

    Article  Google Scholar 

  • Wen, H. J., Carignan, J., Zhang, Y. X., et al., 2011. Molybdenum Isotopic Records across the Ediacaran Cambrian Boundary. Geology, 39(8):775–778. DOI:10.1130/G32055.1.

    Article  Google Scholar 

  • Wen, H., Carignan, J., Chu, X., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390: 164–172. DOI:10.1016/jchemgeo.2014.10.022.

    Article  Google Scholar 

  • Wiesli, R. A., Beard, B. L., Johnson, C. M., 2004. Experimental Determination of Fe Isotope Fractionation between Aqueous Fe, Siderite and “Green Rust” in Abiotic Systems. Chemical Geology, 211(3–4): 343–362. DOI:10.1016/jchemgeo.2004.07.002.

    Article  Google Scholar 

  • Wille, M., Nagler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453(7196): 767–769. DOI:10.1038/nature07072.

    Article  Google Scholar 

  • Wu, L., Beard, B.L., Roden, E.E., et al., 2011. Stable Iron Isotope Fractionation between Aqueous Fe(II) and Hydrous Ferric Oxide. Environmental Science and Technology, 45(5): 1847–1852. DOI:10.1021/es103171x.

    Article  Google Scholar 

  • Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shalesin South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318(4): 45–59. DOI:10.1016/jchemgeo.2012.05.016.

    Article  Google Scholar 

  • Yamaguchi, K. E., Johnson, C. M., Beard, B. L., et al., 2005. Biogeochemical Cycling of Iron in the Archean Paleoproterozoic Earth: Constraints from Iron Isotope Variations in Sedimentary Rocks from the Kaapvaal and Pilbara Cratons. Chemical Geology, 218: 135–169. DOI:10.1016/jchemgeo.2005.01.020.

    Article  Google Scholar 

  • Yin, G. Z., Wang, Y. G., 2010. A Preliminary Study of Sinian-Cambrian Boundary in Guizhou Province. Journal of stratigraphy, 6: 286–293 (in Chinese).

    Google Scholar 

  • Zhao, X. M., Zhang, H. F., Zhu, X. K., et al., 2012. Iron Isotope Evidence for Multistage Melt–Peridotite Interactions in the Lithospheric Mantle of Eastern China. Chemical Geology, 292–293(23): 127–139. DOI:10.1016/jchemgeo. 2011.11.016.

    Article  Google Scholar 

  • Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014, Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132–143. DOI:10.1016/jpalaeo.2013.10.002.

    Article  Google Scholar 

  • Zhu, R. X., Li, X. H., Hou, X. G., et al., 2010. SIMS U-Pb Zircon Age of a Tuff Layer in the Meishucun Section, Yunnan, Southwest China: Constraint on the Age of the Precambrian-Cambrian Boundary. Science in China Series D: Earth Sciences, 52: 1385–1392. DOI:10.1007/ s11430-009-0152-6.

    Article  Google Scholar 

  • Zhu, X. K., Li, Z. H., Zhao, X. M., et al., 2008. High-Precision Measurements of Fe Isotopes Using MC-ICP-MS and Fe Isotope Compositions of Geological Reference Materials. Acta Petrologica et Mineralogica, 27: 263–272 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Wen, H. & Zhu, X. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. J. Earth Sci. 27, 282–296 (2016). https://doi.org/10.1007/s12583-016-0687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0687-3

Key Words

Navigation