Journal of Earth Science

, Volume 27, Issue 2, pp 297–316 | Cite as

The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China

  • Zhenbing She
  • Fanyan Yang
  • Wei Liu
  • Luhua Xie
  • Yusheng Wan
  • Chao Li
  • Dominic Papineau
Article

Abstract

The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14–1.83 Ga Hutuo Group in the North China Craton is a >10 km thick volcano- sedimentary sequence, including >5 km thick well-preserved carbonates that were deposited in supra- tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ13C evolution. It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ13Ccarb values preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values (+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event (SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.

Key Words

Paleoproterozoic Lomagundi-Jatuli event Hutuo Group carbon isotope carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, J., 1986. The Early Precambrian Geology of Wutaishan. Tianjin Science and Technology Press, Tianjin. 475 (in Chinese with English Abstract)Google Scholar
  2. Baker, A. J., Fallick, A. E., 1989a. Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water. 337: 352–354Google Scholar
  3. Baker, A. J., Fallick, A. E., 1989b. Heavy Carbon in Two-Billion-Year-Old Marbles from Lofoten-Vester?len, Norway: Implications for the Precambrian Carbon Cycle. Geochimica et Cosmochimica Acta, 53: 1111–1115CrossRefGoogle Scholar
  4. Bathurst, R. G., 1972. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology. Elsevier, Amsterdam. 658Google Scholar
  5. Bekker, A., Karhu, J. A., Eriksson, K. A., et al., 2003. Chemostratigraphy of Paleoproterozoic Carbonate Successions of the Wyoming Craton: Tectonic Forcing of Biogeochemical Change? Precambrian Research, 120: 279–325CrossRefGoogle Scholar
  6. Bekker, A., Karhu, J. A., Kaufman, A. J., 2006. Carbon Isotope Record for the Onset of the Lomagundi Carbon Isotope Excursion in the Great Lakes Area, North America. Precambrian Research, 148: 145–180CrossRefGoogle Scholar
  7. Bekker, A., Kaufman, A. J., Karhu, J. A., et al., 2005. Evidence for Paleoproterozoic Cap Carbonates in North America. Precambrian Research, 137: 167–206CrossRefGoogle Scholar
  8. Bickle, M. J., Chapman, H. J., Ferry, J. M., et al., 1997. Fluid Flow and Diffusion in the Waterville Limestone, South-Central Maine: Constraints from Strontium, Oxygen and Carbon Isotope Profiles. Journal of Petrology, 38: 1489–1512CrossRefGoogle Scholar
  9. Bickle, M. J., Chapman, H. J., Wickham, S. M., et al., 1995. Strontium and Oxygen Isotope Profiles Across Marble- Silicate Contacts, Lizzies Basin, East Humboldt Range, Nevada: Constraints on Metamorphic Permeability Contrasts and Fluid Flow. Contributions to Mineralogy and Petrology, 121: 400–413CrossRefGoogle Scholar
  10. Boulvais, P., Fourcade, S., Gruau, G., et al., 1998. Persistence of Pre-Metamorphic C and O isotopic Signatures in Marbles Subject to Pan-African Granulite-facies Metamorphism and U–Th Mineralization (Tranomaro, Southeast Madagascar). Chemical Geology, 150: 247–262CrossRefGoogle Scholar
  11. Brasier, M. D., Lindsay, J. F., 2010. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26: 555–558CrossRefGoogle Scholar
  12. Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock-forming Minerals (Second edition). Longman, London. 696Google Scholar
  13. Dongye, M., 1989. The Early-Middle Precambrian Phosphate Deposits in North China. Journal of Changchun University of Earth Science, 19: 181–186 (in Chinese with English abstract)Google Scholar
  14. Du, L. L., Yang, C. H., Ren, L. D., et al., 2009. Petrology, Geochemistry and Petrogenesis of the Metabasalts of the Hutuo Group, Wutai Mountains, Shanxi, China. Geological Bulletin of China, 28: 867–876Google Scholar
  15. Du, L., Yang, C., Guo, J., et al., 2010. The Age of the Base of the Paleoproterozoic Hutuo Group in the Wutai Mountains Area, North China Craton: SHRIMP Zircon U-Pb Dating of Basaltic Andesite. Chinese Science Bulletin, 55: 1782–1789CrossRefGoogle Scholar
  16. Du, L., Yang, C., Wang, W., et al., 2011. The Re-examination of the Age and Stratigraphic Subdivision of the Hutuo Group in the Wutai Mountains Area, North China Craton: Evidences from Geology and Zircon U-Pb Geochronology. Acta Petrologica Sinica, 27: 1037–1055Google Scholar
  17. Du, L., Yang, C., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2137 Ma Huangjinshan A-type Granite Porphyry in the Wutai area. Journal of Asian Earth Sciences, 72: 190–202CrossRefGoogle Scholar
  18. Emrich, K., Ehhalt, D. H., Vogel, J. C., 1970. Carbon Isotope Fractionation during the Precipitation of Calcium Carbonate. Earth and Planetary Science Letters, 8: 363–371CrossRefGoogle Scholar
  19. Gaucher, C., Sial, A. N., Ferreira, V. P., et al., 2007. Chemostratigraphy of the Cerro Victoria Formation (Lower Cambrian, Uruguay): Evidence for Progressive Climate Stabilization across the Precambrian–Cambrian Boundary. Chemical Geology, 237: 28–46CrossRefGoogle Scholar
  20. Guerrera, A., Peacock, S. M., Knauth, L. P., 1997. Large 18O and 13C Depletions in Greenschist Facies Carbonate Rocks, Western Arizona. Geology, 25: 943–946CrossRefGoogle Scholar
  21. Guo, H., Du, Y., Kah, L. C., et al., 2013. Isotopic Composition of Organic and Inorganic Carbon from the Mesoproterozoic Jixian Group, North China: Implications for Biological and Oceanic Evolution. Precambrian Research, 224: 169–183CrossRefGoogle Scholar
  22. Guo, J., Ren, L., Bai, J., 2011. Analysis of the Sedimentary Setting of the Paleoproterozoic Hutuo Group in the Wutaishan Area: Foreland Basin or Intracontinental Rift Basin? Earth Science Frontiers, 18: 211–220Google Scholar
  23. Hoffman, P. F., 2013. The Great Oxidation and a Siderian Snowball Earth: MIF-S Based Correlation of Paleoproterozoic Glacial Epochs. Chemical Geology, 362: 143–156CrossRefGoogle Scholar
  24. Hou, G., Li, J., Liu, Y., et al., 2005. Late Paleoproterozoic Extensional Events in North China Craton: Aulacogen and dyke Swarms. Progress in Natural Science, 15: 1366–1373 (in Chinese)Google Scholar
  25. Hudson, J. D., 1977. Stable Isotopes and Limestone Lithification. Journal of the Geological Society, 133: 637–660CrossRefGoogle Scholar
  26. Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161: 37–57CrossRefGoogle Scholar
  27. Kah, L. C., Sherman, A. G., Narbonne, G. M., et al., 1999. d13C Stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for Regional Lithostratigraphic Correlations. Canadian Journal of Earth Sciences, 36: 313–332CrossRefGoogle Scholar
  28. Karhu, J. A., Holland, H. D., 1996. Carbon Isotopes and the Rise of Atmospheric Oxygen. Geology, 24: 867–870CrossRefGoogle Scholar
  29. Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27–49CrossRefGoogle Scholar
  30. Kong, F., Yuan, X., Zhou, C., 2011. Paleoproterozoic Glaciation: Evidence from Carbon Isotope Record of the Hutuo Group, Wutai Mountain Area of Shanxi Province, China. Chinese Science Bulletin, 56: 2922–2930CrossRefGoogle Scholar
  31. Kump, L. R., Junium, C., Arthur, M. A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694–1696CrossRefGoogle Scholar
  32. Kusky, T.M., Li, J., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22: 383–397CrossRefGoogle Scholar
  33. Lai, Y., Chen, C., Tang, H., 2012. Paleoproterozoic Positive d13C Excursion in Henan, China. Geomicrobiology Journal, 29: 287–298CrossRefGoogle Scholar
  34. Lewis, S., Holness, M., Graham, C., 1998. Ion Microprobe Study of Marble from Naxos, Greece: Grain-Scale Fluid Pathways and Stable Isotope Equilibration during Metamorphism. Geology, 26: 935–938CrossRefGoogle Scholar
  35. Liu, C., Zhao, G., Sun, M., et al., 2011. U-Pb and Hf isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications. Gondwana Research, 20: 106–121CrossRefGoogle Scholar
  36. Liu, C., Zhao, G., Sun, M., et al., 2012. Detrital Zircon U–Pb Dating, Hf Isotopes and Whole-Rock Geochemistry from the Songshan Group in the Dengfeng Complex: Constraints on the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 192: 1–15CrossRefGoogle Scholar
  37. Luo, G., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for 1700 to 1300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219–232CrossRefGoogle Scholar
  38. Maheshwari, A., Sial, A. N., Gaucher, C., et al., 2010. Global Nature of the Paleoproterozoic Lomagundi Carbon Isotope Excursion: A Review of Occurrences in Brazil, India, and Uruguay. Precambrian Research, 182: 274–299CrossRefGoogle Scholar
  39. Martin, A. P., Condon, D. J., Prave, A. R., et al., 2013a. A Review of Temporal Constraints for the Palaeoproterozoic Large, Positive Carbonate Carbon Isotope Excursion (the Lomagundi- Jatuli Event). Earth-Science Reviews, 127: 242–261CrossRefGoogle Scholar
  40. Martin, A. P., Condon, D. J., Prave, A. R., et al., 2013b. Dating the Termination of the Palaeoproterozoic Lomagundi-Jatuli Carbon Isotopic Event in the North Transfennoscandian Greenstone Belt. Precambrian Research, 224: 160–168CrossRefGoogle Scholar
  41. Melezhik, V. A., Fallick, A. E., 2010. A Widespread Positive d13Ccarb Anomaly at Around 2.33–2.06 Ga on the Fennoscandian Shield: a Paradox? Terra Nova, 8: 141–157CrossRefGoogle Scholar
  42. Melezhik, V. A., Fallick, A. E., 2003. d13C and d18O Variations in Primary and Secondary Carbonate Phases: Several Contrasting Examples from Palaeoproterozoic 13C-Rich Metamorphosed Dolostones. Chemical Geology, 201: 213–228CrossRefGoogle Scholar
  43. Melezhik, V. A., Fallick, A. E., 2010. On the Lomagundi-Jatuli Carbon Isotopic Event: The Evidence from the Kalix Greenstone Belt, Sweden. Precambrian Research, 179: 165–190CrossRefGoogle Scholar
  44. Melezhik, V. A., Fallick, A. E., Filippov, M. M., et al., 1999a. Karelian Shungite-an Indication of 2.0-Ga-old Metamorphosed Oil-Shale and Generation of Petroleum: Geology, Lithology and Geochemistry. Earth-Science Reviews, 47: 1–40CrossRefGoogle Scholar
  45. Melezhik, V. A., Fallick, A. E., Medvedev, P. V., et al., 1999b. Extreme 13Ccarb Enrichment in ca. 2.0 Ga Magnesite- Stromatolite-Dolomite-'Red Beds' Association in a Global Context: a Case for the World-Wide Signal Enhanced by a Local Environment. Earth-Science Reviews, 48: 71–120CrossRefGoogle Scholar
  46. Melezhik, V. A., Fallick, A. E., Rychanchik, D. V., et al., 2005a. Palaeoproterozoic Evaporites in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the d13C Excursion. Terra Nova, 17: 141–148CrossRefGoogle Scholar
  47. Melezhik, V. A., Gorokhov, I. M., Fallick, A. E., et al., 2001. Strontium and Carbon Isotope Geochemistry Applied to Dating of Carbonate Sedimentation: an Example from High-Grade Rocks of the Norwegian Caledonides. Precambrian Research, 108: 267–292CrossRefGoogle Scholar
  48. Melezhik, V., Fallick, A. E., Pokrovsky, B. G., 2005b. Enigmatic Nature of Thick Sedimentary Carbonates Depleted in 13C beyond the Canonical Mantle Value: the Challenges to Our Understanding of the Terrestrial Carbon Cycle. Precambrian Research, 137: 131–165CrossRefGoogle Scholar
  49. Melezhik, V., Prave, A., Fallick, A., et al., 2013. Reading the Archive of Earth's Oxygenation: Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia. Springer, Heidelberg. 490Google Scholar
  50. Miao, P. S., Zhang, Z. F., Zhang, J. Z., et al., 1999. Paleoproterozoic Stratigraphic Sequence in the Wutai Mountain Area. Regional Geology of China, 18: 405–413 (in Chinese with English Abstract)Google Scholar
  51. Nafi, M., Fei, Q., Yang, X. H., 2004. Type of Sandstone and Source of Carbonate Cement in the Kongdian Formation (Upper Part), South Slope of the Dongying Depression, East China. Journal of Applied Sciences, 4: 235–241CrossRefGoogle Scholar
  52. Papineau, D., 2010. Global Biogeochemical Changes at both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10: 165–181CrossRefGoogle Scholar
  53. Papineau, D., De Gregorio, B. T., Stroud, R.M., et al., 2010. Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland II: Isotopic and Chemical Compositions and Comparison with Paleoproterozoic Banded iron Formations. Geochimica et Cosmochimica Acta, 74: 5884–5905CrossRefGoogle Scholar
  54. Papineau, D., Purohit, R., Fogel, M.L., et al., 2013. High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere. Earth and Planetary Science Letters, 362: 225–236CrossRefGoogle Scholar
  55. Schidlowski, M., Eichmann, R., Junge, C.E., 1976. Carbon Isotope Geochemistry of the Precambrian Lomagundi Carbonate Province, Rhodesia. Geochimica et Cosmochimica Acta, 40: 449–455CrossRefGoogle Scholar
  56. Tang, H., Chen, Y., Wu, G., et al., 2011. Paleoproterozoic Positive d13Ccarb Excursion in the Northeastern Sino-Korean Craton: Evidence of the Lomagundi Event. Gondwana Research, 19: 471–481CrossRefGoogle Scholar
  57. Valley, J.W., 1986. Stable Isotope Geochemistry of Metamorphic Rocks, Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 445–489Google Scholar
  58. Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique. Stable Isotopes in Sedimentary Geology. SEPM Short Course No. 10. Society for Sedimentary Geology, DallasGoogle Scholar
  59. Wan, Y., Miao, P., Liu, D., et al., 2010. Formation Ages and SourceRegions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons: Resolution of debates over their Stratigraphic Relationships. Chinese Science Bulletin, 55: 1278–1284CrossRefGoogle Scholar
  60. Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883–892Google Scholar
  61. Wang, R., 2010. A Primary Discussion on Rb-Sr and Sm-Nd Isotopic Systems of Basaltic Rocks of Hutuo Group of Early Proterozoic, Shanxi. Progress in Precambrian Research, 20: 35–42 (in Chinese with English abstract)Google Scholar
  62. Wilde, S. A., Zhao, G., Wang, K., et al., 2004. First SHRIMP Zircon U-Pb Ages for Hutuo Group in Wutaishan: Further Evidence for Palaeoproterozoic Amalgamation of North China Craton. Chinese Science Bulletin, 49: 83–90 (in Chinese)CrossRefGoogle Scholar
  63. Wu, J., Liu, D., Jin, L., 1986. The Zircon U-Pb Age of Metamorphosed Basic Volcanic Lavas from the Hutuo Group in the Wutai Mountain area, Shanxi Province. Geological Review, 32: 178–185 (in Chinese with English abstract)Google Scholar
  64. Zhao, D., 1982. The Age and Genesis of Phosphorous Deposits of the Dongjiao Type. Chinese Journal of Geology, (4): 386–394 (in Chinese with English abstract)Google Scholar
  65. Zhao, G., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177–202CrossRefGoogle Scholar
  66. Zhao, G., Wilde, S. A., Cawood, P. A., et al., 1999. Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications. Tectonophysics, 310: 37–53CrossRefGoogle Scholar
  67. Zhong, H., Ma, Y., 1997. Carbon Isotope Stratigraphy of Dolomites in the Early Proterozoic Succession, North China. Geological Magazine, 134: 763–770CrossRefGoogle Scholar
  68. Zhu, S., 1982. An Outline of Studies on the Precambrian Stromatolites of China. Precambrian Research, 18: 367–396CrossRefGoogle Scholar
  69. Zhu, S., Chen, H., 1992. Characteristics of Palaeoproterozoic Stromatolites in China. Precambrian Research, 57: 135–163CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhenbing She
    • 1
    • 2
  • Fanyan Yang
    • 3
  • Wei Liu
    • 4
  • Luhua Xie
    • 5
    • 6
  • Yusheng Wan
    • 7
  • Chao Li
    • 1
  • Dominic Papineau
    • 8
    • 9
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.School of Earth SciencesChina University of GeosciencesWuhanChina
  3. 3.Ningxia Geology And Mineral Resources Centre LabYinchuanChina
  4. 4.Tianjin Research Institute for Water Transport EngineeringM. O. T.TianjinChina
  5. 5.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  6. 6.Key Laboratory of Marginal Sea Geology, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  7. 7.Beijing SHRIMP Center, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  8. 8.London Centre for NanotechnologyUniversity College LondonLondonUK
  9. 9.Department of Earth SciencesUniversity College LondonLondonUK

Personalised recommendations