Journal of Earth Science

, Volume 27, Issue 6, pp 989–997 | Cite as

Metamorphic temperature investigation of coexisting calcite and dolomite marble––examples from Nikani Ghar marble and Nowshera Formation, Peshawar Basin, Pakistan

  • Muhammad Fahad
  • Yaseen Iqbal
  • Mohammad Riaz
  • Rick Ubic
  • Simon A. T. Redfern
Open Access
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains


Using marble samples from the Nikani Ghar marble and Nowshera Formation from Northern Pakistan the determination of the temperature of metamorphism was undertaken with the help of calcite-dolomite solvus geothermometer. Two types of marbles, that is, calcite-dolomite marble and quartz-bearing calcite-dolomite marble were selected. Petrographic and scanning electron microscope analysis of dolomite samples indicated different grain sizes. X-ray diffraction technique indicated the calcites MgCO3 content up to 7.93 mol.%. Nikani Ghar marble samples have shown lower contents of MgCO3 as compared to samples from Nowshera Formation. The calcite-dolomite-quartz marble has also showed relatively lower MgCO3 content and hence rather low temperature (~500 °C). The temperature reached during peak metamorphism of the investigated marble occurrence, based on calcitedolomite solvus was 628 °C. Metamorphic temperatures derived from the present study were shown as a linear graph and values were in good agreement with the published literature.

Key words

calcite dolomite metamorphic temperature geothermometer X-ray diffraction 


  1. Ahmad, I., 1986. Geology of Jowar Area, Karakar Pass, Swat District, NWFP, Pakistan: [Dissertation]. National Centre of Excellence in Geology, University of Peshawar, Peshawar. 144–145Google Scholar
  2. Barron, B. J., 1974. The Use of Coexisting Calcite-Ankerite Solid Solutions as a Geothermometer. Contributions to Mineralogy and Petrology, 47(1): 77–80. doi:10.1007/bf00418558CrossRefGoogle Scholar
  3. Bickle, M. J., Powell, R., 1977. Calcite-Dolomite Geothermometry for Iron-Bearing Carbonates: The Glockner Area of the Tauern Window, Austria. Contributions to Mineralogy and Petrology, 59: 281–292CrossRefGoogle Scholar
  4. Bischoff, W. D., Bishop, F. C., Mackenzie, F. T., 1983. Biogenically Produced Magnesian Calcite Inhomo Geneities in Chemical and Physical-Properties Comparison with Synthetic Phases. American Mineralogist, 68: 1183–1188Google Scholar
  5. Bowman, J. R., Essene, E. J., 1982. P-T-X(CO2) Conditions of Contact Metamorphism in the Black Butte Aureole, Elkhorn, Montana. American Journal of Science, 282(3): 311–340. doi:10.2475/ajs.282.3.311CrossRefGoogle Scholar
  6. Chave, K. E., 1952. A Solid Solution between Calcite and Dolomite. The Journal of Geology, 60(2): 190–192. doi:10.1086/625949CrossRefGoogle Scholar
  7. DiPietro, J. A., Hussain, A., Ahmad, I., et al., 2000. The Main Mantle Thrust in Pakistan: Its Character and Extent. Geological Society, London, Special Publications, 170(1): 375–393. doi:10.1144/gsl.sp.2000.170.01.20CrossRefGoogle Scholar
  8. DiPietro, J. A., Lawrence, R. D., 1991. Himalayan Structure and Metamorphism South of the Main Mantle Thrust, Lower Swat, Pakistan. Journal of Metamorphic Geology, 9(4): 481–495. doi:10.1111/j.1525-1314.1991.tb00541.xCrossRefGoogle Scholar
  9. Falini, G., Gazzano, M., Ripamonti, A., 1996. Magnesium Calcite Crystallization from Water-Alcohol Mixtures. Chemical Communications, 271(9): 1037–1038. doi:10.1039/cc9960001037CrossRefGoogle Scholar
  10. Goldsmith, J. R., Graf, D. L., 1958. Relation between Lattice Constants and Composition of the Ca-Mg Carbonates. American Mineralogist, 43: 84–101Google Scholar
  11. Goldsmith, J. R., Graf, D. L., Heard, H. C., 1961. Lattice Constants of the Calcium-Magnesium Carbonates. American Mineralogist, 46: 453–459Google Scholar
  12. Goldsmith, J. R., Graf, D. L., Joensuu, O. I., 1955. The Occurrence of Magnesian Calcites in Nature. Geochimica et Cosmochimica Acta, 7(5–6): 212–230. doi:10.1016/0016-7037(55)90033-8CrossRefGoogle Scholar
  13. Goldsmith, J. R., Newton, R. C., 1969. P-T-X Relations in the System CaCO3-MgCO3 at High Temperatures and Pressures. Amer. Jour. Sci. Schairer., 267-A: 160–190Google Scholar
  14. Graf, D. L., Goldsmith, J. R., 1955. Dolomite-Magnesian Calcite Relation at Elevated Temperatures and CO2 Pressure. Geochimica et Cosmochimica Acta, 7: 109–128CrossRefGoogle Scholar
  15. Graf, D. L., Goldsmith, J. R., 1958. The Solid Solubility of MgCO3 in CaCO3: A Revision. Geochimica et Cosmochimica Acta, 13(2–3): 218–219. doi:10.1016/0016-7037(58)90048-6CrossRefGoogle Scholar
  16. Harker, R. I., Tuttle, O. F., 1955. Studies in the System CaOMgO-CO2; Part I, the Thermal Dissociation of Calcite, Dolomite and Magnesite. American Journal of Science, 253(4): 209–224. doi:10.2475/ajs.253.4.209CrossRefGoogle Scholar
  17. Hatcher, R, D., Price, V. Jr., Snipes, P. S., 1973. Analysis of Chemical and Paleotemperature Data from Selected rocks of the Southern Appalachians. Southeastern Geol., 15: 55–70Google Scholar
  18. Höy, T., 1970. Genesis of Brucite in Marble near Wakefield, Quebec: [Dissertation]. Carleton University, OttawaGoogle Scholar
  19. Hussain, A., DiPietro, J. A., Pogue, K. R., et al., 2004. Geological Map of the 43B Degree Sheet, NWFP, Pakistan. Degree Sheet Map Series, Geological Map No. 11. Geological Survey of Pakistan, QuettaGoogle Scholar
  20. Hutcheon, I., Moore, J. M., 1973. The Tremolite Isograd near Marble Lake, Ontario. Canadian Journal of Earth Sciences, 10(6): 936–947. doi:10.1139/e73-082CrossRefGoogle Scholar
  21. Iii, D. P., Essene, E. J., Marcotty, L. A., 1982. Thermometry and Barometry of some Amphibolite-Granulite Facies Rocks from the Otter Lake Area, Southern Quebec. Canadian Journal of Earth Sciences, 19(9): 1759–1774. doi:10.1139/e82-155CrossRefGoogle Scholar
  22. Kazmi, A. H., Rana, R. A., 1982, Tectonic Map of Pakistan, Geological Survey of Pakistan, Quetta. 1Google Scholar
  23. Larson, A. C., Dreele, R. B. V., 1994. General Structure Analysis System (GSAS). Los Alamos National Laboratory, Report LAUR 86–748, Los AlamosGoogle Scholar
  24. Lawrence, R. D., Snee, L. W., Rosenberg, P. S., 1985. Nappe Structure in a Crustal Scale Duplex in Swat, Pakistan. Geol. Soc. Am. Abst. Programs, 17: 640–641Google Scholar
  25. Milliman, J. D., Gastner, M., Müller, J., 1971. Utilization of Magnesium in Coralline Algae. Geological Society of America Bulletin, 82(3): 573–580. doi:10.1130/0016-7606(1971)82[573:uomica];2CrossRefGoogle Scholar
  26. Nesbitt, B. E., Essene, E. J., 1982. Metamorphic Thermometry and Barometry of a Portion of the Southern Blue Ridge Province. American Journal of Science, 282(5): 701–729. doi:10.2475/ajs.282.5.701CrossRefGoogle Scholar
  27. Pogue, K. R., Wardlaw, B. R., Harris, A. G., et al., 1992. Paleozoic and Mesozoic Stratigraphy of the Peshawar Basin, Pakistan: Correlations and Implications. Geological Society of America Bulletin, 104(8): 915–927. doi:10.1130/0016-7606(1992)104〈0915: pamsot〉;2CrossRefGoogle Scholar
  28. Powell, R., Condliffe, D, M., Condliffe, E., 1984. Calcite-Dolomite Geothermometry in the CaCO3-MgCO3-FeCO3: An Experimental Study. Journal of Metamorphic Geology, 2: 33–42CrossRefGoogle Scholar
  29. Puhan, D., 1976. Metamorphic Temperature Determined by Means of the Dolomite-Calcite Solvus Geothermometer-Examples from the Central Damara Orogen (South West Africa). Contributions to Mineralogy and Petrology, 58(1): 23–28. doi:10.1007/bf00384741CrossRefGoogle Scholar
  30. Ralph, K., Diane, G., 1980. Occurrence, Mineral Chemistry, and Metamorphism of Precambrian Carbonate Rocks in a Portion of the Grenville Province. Journal of Petrology, 21(3): 573–620. doi:10.1093/petrology/21.3.573CrossRefGoogle Scholar
  31. Raz, S., Weiner, S., Addadi, L., 2000. Formation of High-Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications. Advanced Materials, 12: 38–42CrossRefGoogle Scholar
  32. Rice, J. M., 1977. Contact Metamorphism of Impure Dolomitic Limestone in the Boulder Aureole, Montana. Contributions to Mineralogy and Petrology, 59(3): 237–259. doi:10.1007/bf00374555CrossRefGoogle Scholar
  33. Rietveld, H. M., 1967. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallographica, 22(1): 151–152. doi:10.1107/s0365110x67000234CrossRefGoogle Scholar
  34. Rietveld, H. M., 1969. A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2: 65–71. doi:10.1107/s0021889869006558CrossRefGoogle Scholar
  35. Rosenberg, P. S., 1985. Himalayan Deformation and Metamorphism of Rocks South of the Main Mantle Thrust in Southern Swat, Pakistan: [Dissertation]. Oregon State University, Corvallis, OregonGoogle Scholar
  36. Sheppard, S. M. F., 1966. Carbon and Oxygen Isotope Studies in Marble: [Dissertation]. McMaster University, HamiltonGoogle Scholar
  37. Sobol, J. W., 1973. The Petrology of Grenville Marbles in the Vicinity of Bancroft, Ontario: [Dissertation]. University of Michigan, MichiganGoogle Scholar
  38. Suzuki, K., 1977. Local Equilibrium during the Contact Metamorphism of Siliceous Dolomites in Kasuga-Mura, Gifu-Ken, Japan. Contributions to Mineralogy and Petrology, 61(1): 79–89. doi:10.1007/bf00375946CrossRefGoogle Scholar
  39. Talantsev, A. S., 1976. Dolomite-Calcite Geothermobarometer. Dokl. Earth Sci. Sect., 228: 166–168Google Scholar
  40. Talantsev, A. S., 1978. Revision of the Calcite-Dolomite Geothermobarometer. Geochem. Int., 15: 108–116Google Scholar
  41. Toby, B. H., 2001. EXPGUI: A Graphical User Interface ForGSAS. Journal of Applied Crystallography, 34(2): 210–213. doi:10.1107/s0021889801002242CrossRefGoogle Scholar
  42. Wada, H., Suzuki, K., 1983. Carbon Isotopic Thermometry Calibrated by Dolomite-Calcite Solvus Temperatures. Geochimica et Cosmochimica Acta, 47(4): 697–706. doi:10.1016/0016-7037(83)90104-7CrossRefGoogle Scholar
  43. Zhang, F., Xu, H., Konishi, H., et al., 2010. A Relationship between D104 Value and Composition in the Calcite-Disordered Dolomite Solid-Solution Series. American Mineralogist, 95(11–12): 1650–1656. doi:10.2138/am.2010.3414CrossRefGoogle Scholar

Copyright information

© The Authors 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Muhammad Fahad
    • 1
    • 2
  • Yaseen Iqbal
    • 2
  • Mohammad Riaz
    • 3
  • Rick Ubic
    • 4
  • Simon A. T. Redfern
    • 5
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyAbbottabadPakistan
  2. 2.Materials Research Laboratory, Department of PhysicsUniversity of PeshawarPeshawarPakistan
  3. 3.National Centre of Excellence in GeologyUniversity of PeshawarPeshawarPakistan
  4. 4.College of Engineering Boise State UniversityBoiseUSA
  5. 5.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations