Advertisement

Journal of Earth Science

, Volume 26, Issue 6, pp 785–790 | Cite as

Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures

  • J. Germán Rubino
  • Beatriz Quintal
  • Tobias M. Müller
  • Luis Guarracino
  • Ralf Jänicke
  • Holger Steeb
  • Klaus Holliger
Article

Abstract

An important characteristic of fractured rocks is their high seismic attenuation, which so far has been mainly attributed to wave-induced fluid flow (WIFF) between the fractures and the embedding matrix. The influence of fracture connectivity on seismic attenuation has, however, recently, only been investigated. Numerical compressibility and shear tests based on Biot’s quasi-static poro-elastic equations illustrate that an important manifestation of WIFF arises in the presence of fracture connectivity. The corresponding energy loss, which can be significant for both P- and S-waves, is mainly due to fluid flow within the connected fractures and is sensitive to the permeabilities as well as the lengths and intersection angles of the fractures. Correspondingly, this phenomenon contains valuable information on the governing hydraulic properties of fractured rocks and hence should be accounted for whenever realistic seismic models of such media are needed.

Key Words

fractured rocks seismic attenuation WIFF fracture connectivity embedding matrix Biot’s theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bakulin, A., Grechka, V., Tsvankin, I., 2000. Estimation of Fracture Parameters from Reflection Seismic Data—Part I: HTI Model due to a Single Fracture Set. Geophysics, 65(6): 1788–1802. doi: 10.1190/1.1444863 CrossRefGoogle Scholar
  2. Berkowitz, B., Bour, O., Davy, P., et al., 2000. Scaling of Fracture Connectivity in Geological Formations. Geophysical Research Letters, 27(14): 2061–2064. doi: 10.1029/1999gl011241 CrossRefGoogle Scholar
  3. Berryman, J. G., Wang, H. F., 2001. Dispersion in Poroelastic Systems. Physical Review E, 64(1): 011303. doi: 10.1103/physreve.64.011303
  4. Biot, M. A., 1941. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2): 155–164. doi: 10.1063/1.1712886 CrossRefGoogle Scholar
  5. Biot, M. A., 1962. Mechanics of Deformation and Acoustic Propagation in Porous Media. Journal of Applied Physics, 33(4): 1482–1498. doi: 10.1063/1.1728759 CrossRefGoogle Scholar
  6. Brajanovski, M., Gurevich, B., Schoenberg, M., 2005. A Model for P-wave Attenuation and Dispersion in a Porous Medium Permeated by Aligned Fractures. Geophysical Journal International, 163(1): 372–384. doi: 10.1111/j.1365-246x.2005.02722.x CrossRefGoogle Scholar
  7. Chapman, M., 2003. Frequency-Dependent Anisotropy due to Meso-Scale Fractures in the Presence of Equant Porosity. Geophysical Prospecting, 51(5): 369–379. doi: 10.1046/j.1365-2478.2003.00384.x CrossRefGoogle Scholar
  8. Clark, R. A., Benson, P. M., Carter, A. J., et al., 2009. Anisotropic P-Wave Attenuation Measured from a Multi-Azimuth Surface Seismic Reflection Survey. Geophysical Prospecting, 57(5): 835–845. doi: 10.1111/j.1365-2478.2008.00772.x CrossRefGoogle Scholar
  9. Holliger, K., Bühnemann, J., 1996. Attenuation of Broad-Band (50–1 500 Hz) Seismic Waves in Granitic Rocks near the Earth’ Surface. Geophysical Research Letters, 23(15): 1981–1984. doi: 10.1029/96gl01855 CrossRefGoogle Scholar
  10. Jänicke, R., Quintal, B., Steeb, H., 2015. Numerical Homogenization of Mesoscopic Loss in Poroelastic Media. European Journal of Mechanics-A/Solids, 49: 382–395. doi: 10.1016/j.euromechsol.2014.08.011 CrossRefGoogle Scholar
  11. Maultzsch, S., Chapman, M., Liu, E. R., et al., 2003. Modelling Frequency-Dependent Seismic Anisotropy in Fluid-Saturated Rock with Aligned Fractures: Implication of Fracture Size Estimation from Anisotropic Measurements. Geophysical Prospecting, 51(5): 381–392. doi: 10.1046/j.1365-2478.2003.00386.x CrossRefGoogle Scholar
  12. Nakagawa, S., Schoenberg, M. A., 2007. Poroelastic Modeling of Seismic Boundary Conditions across a Fracture. The Journal of the Acoustical Society of America, 122(2): 831–847. doi: 10.1121/1.2747206 CrossRefGoogle Scholar
  13. Nelson, R., 2001. Geologic Analysis of Naturally Fractured Reservoirs (2nd Ed.). Gulf Professional Publishing, Woburn. 332Google Scholar
  14. Peacock, S., McCann, C., Sothcott, J., et al., 1994. Experimental Measurements of Seismic Attenuation in Microfractured Sedimentary Rock. Geophysics, 59(9): 1342–1351. doi: 10.1190/1.1443693 CrossRefGoogle Scholar
  15. Quintal, B., Steeb, H., Frehner, M., et al., 2011. Quasi-Static Finite Element Modeling of Seismic Attenuation and Dispersion due to Wave-Induced Fluid Flow in Poroelastic Media. Journal of Geophysical Research, 116(B1): B01201. doi: 10.1029/2010jb007475 Google Scholar
  16. Quintal, B., Steeb, H., Frehner, M., et al., 2012. Pore Fluid Effects on S-Wave Attenuation Caused by Wave-Induced Fluid Flow. Geophysics, 77(3): L13–L23. doi: 10.1190/geo2011-0233.1 CrossRefGoogle Scholar
  17. Quintal, B., Jänicke, R., Rubino, J. G., et al., 2014. Sensitivity of S-Wave Attenuation to the Connectivity of Fractures in Fluid-Saturated Rocks. Geophysics, 79(5): WB15–WB24. doi: 10.1190/geo2013-0409.1 CrossRefGoogle Scholar
  18. Rubino, J. G., Ravazzoli, C. L., Santos, J. E., 2009. Equivalent Viscoelastic Solids for Heterogeneous Fluid-Saturated Porous Rocks. Geophysics, 74(1): N1–N13. doi: 10.1190/1.3008544 CrossRefGoogle Scholar
  19. Rubino, J. G., Guarracino, L., Müller, T. M., et al., 2013. Do Seismic Waves Sense Fracture Connectivity? Geophysical Research Letters, 40(4): 692–696. doi: 10.1002/grl.50127 CrossRefGoogle Scholar
  20. Rubino, J. G., Müller, T. M., Guarracino, L., et al., 2014. Seismoacoustic Signatures of Fracture Connectivity. Journal of Geophysical Research: Solid Earth, 119(3): 2252–2271. doi: 10.1002/2013jb010567 Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Germán Rubino
    • 1
  • Beatriz Quintal
    • 1
  • Tobias M. Müller
    • 2
  • Luis Guarracino
    • 3
  • Ralf Jänicke
    • 4
  • Holger Steeb
    • 4
  • Klaus Holliger
    • 1
  1. 1.Applied and Environmental Geophysics Group, Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
  2. 2.Energy FlagshipCommonwealth Scientific and Industrial Research OrganizationPerthAustralia
  3. 3.CONICET, Facultad de Ciencias Astronómicasy GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.Institute of MechanicsUniversity of BochumBochumGermany

Personalised recommendations