Advertisement

Journal of Earth Science

, Volume 26, Issue 6, pp 844–850 | Cite as

Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data

  • Jan van der Kruk
  • Nils Gueting
  • Anja Klotzsche
  • Guowei He
  • Sebastian Rudolph
  • Christian von Hebel
  • Xi Yang
  • Lutz Weihermüller
  • Achim Mester
  • Harry Vereecken
Article

Abstract

Due to the recent system developments for the electromagnetic characterization of the subsurface, fast and easy acquisition is made feasible due to the fast measurement speed, easy coupling with GPS systems, and the availability of multi-channel electromagnetic induction (EMI) and ground penetrating radar (GPR) systems. Moreover, the increasing computer power enables the use of accurate forward modeling programs in advanced inversion algorithms where no approximations are used and the full information content of the measured data can be exploited. Here, recent developments of large-scale quantitative EMI inversion and full-waveform GPR inversion are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches. In both cases a detailed forward model is used in the inversion procedure that is based on Maxwell’s equations. The multi-channel EMI data that have different sensing depths for the different source-receiver offset are calibrated using a short electrical resistivity tomography (ERT) calibration line which makes it possible to invert for electrical conductivity changes with depth over large areas. The crosshole GPR full-waveform inversion yields significant higher resolution of the permittivity and conductivity images compared to ray-based inversion results.

Key Words

ground penetrating radar electromagnetic induction full-waveform inversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Abdu, H., Robinson, D. A., Seyfried, M., et al., 2008. Geophysical Imaging of Watershed Subsurface Patterns and Prediction of Soil Texture and Water Holding Capacity. Water Resources Research, 44(4): WR007043. doi: 10.1029/2008wr007043
  2. Ernst, J. R., Maurer., H., Green, A. G., et al., 2007. Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell’s Equations. IEEE Transactions on Geoscience and Remote Sensing, 45(9): 2807–2828. doi: 10.1109/tgrs.2007.901048 CrossRefGoogle Scholar
  3. Gueting, N., Klotzsche, A., van der Kruk, J., et al., 2015. Imaging and Characterization of Facies Heterogeneity in an Alluvial Aquifer Using GPR Full-Waveform Inversion and Cone Penetration Tests. Journal of Hydrology, 524: 680–695. doi: 10.1016/j.jhydrol.2015.03.030 CrossRefGoogle Scholar
  4. Klotzsche, A., van der Kruk, J., Bradford, J., et al., 2014. Detection of Spatially Limited High-Porosity Layers Using Crosshole GPR Signal Analysis and Full-Waveform Inversion. Water Resources Research, 50(8): 6966–6985CrossRefGoogle Scholar
  5. Klotzsche, A., van der Kruk, J., Linde, N., et al., 2013. 3-D Characterization of High-Permeability Zones in a Gravel Aquifer Using 2-D Crosshole GPR Full-Waveform Inversion and Waveguide Detection. Geophysical Journal International, 195(2): 932–944. doi: 10.1093/gji/ggt275 CrossRefGoogle Scholar
  6. Klotzsche, A., van der Kruk, J., Meles, G. A., et al., 2010. Full-Waveform Inversion of Cross-Hole Ground-Penetrating Radar Data to Characterize a Gravel Aquifer Close to the Thur River, Switzerland. Near Surface Geophysics, 8(1750): 631–646. doi: 10.3997/1873-0604.2010054 CrossRefGoogle Scholar
  7. Klotzsche, A., van der Kruk, J., Meles, G. A., et al., 2012. Crosshole GPR Full-Waveform Inversion of Waveguides Acting as Preferential Flow Paths within Aquifer Systems. Geophysics, 77(4): H57–H62CrossRefGoogle Scholar
  8. Kurzmann, A., Przebindowska, A., Kohn, D., et al., 2013. Acoustic Full Waveform Tomography in the Presence of Attenuation: A Sensitivity Analysis. Geophysical Journal International, 195(2): 985–1000. doi: 10.1093/gji/ggt305 CrossRefGoogle Scholar
  9. Lavoué, F., Brossier, R., Metivier, L., et al., 2014. Two-Dimensional Permittivity and Conductivity Imaging by Full Waveform Inversion of Multioffset GPR Data: A Frequency-Domain Quasi-Newton Approach. Geophysical Journal International, 197(1): 248–268. doi: 10.1093/gji/ggt528 CrossRefGoogle Scholar
  10. Lavoué, F., van der Kruk, J., Rings, J., et al., 2010. Electromagnetic Induction Calibration Using Apparent Electrical Conductivity Modelling Based on Electrical Resistivity Tomography. Near Surface Geophysics, 8(1750): 3–11. doi: 10.3997/1873-0604.2010037 CrossRefGoogle Scholar
  11. Meles, G. A., Greenhalgh, S. A., van der Kruk, J., et al., 2011. Taming the Non-Linearity Problem in GPR Full-Waveform Inversion for High Contrast Media. Journal of Applied Geophysics, 73(2): 174–186. doi: 10.1016/j.jappgeo.2011.01.001 CrossRefGoogle Scholar
  12. Meles, G. A., van der Kruk, J., Greenhalgh, S. A., et al., 2010. A New Vector Waveform Inversion Algorithm for Simultaneous Updating of Conductivity and Permittivity Parameters from Combination Crosshole/Borehole-To-Surface GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 48(9): 3391–3407. doi: 10.1109/tgrs.2010.2046670 CrossRefGoogle Scholar
  13. Mester, A., van der Kruk, J., Zimmermann, E., et al., 2011. Quantitative Two-Layer Conductivity Inversion of Multi-Configuration Electromagnetic Induction Measurements. Vadose Zone Journal, 10(4): 1319–1330. doi: 10.2136/vzj2011.0035 CrossRefGoogle Scholar
  14. Monteiro Santos, F. A., Triantafilis, J., Bruzgulis, K. E., et al., 2010. Inversion of Multiconfiguration Electromagnetic (DUALEM-421) Profiling Data Using a One-Dimensional Laterally Constrained Algorithm. Vadose Zone Journal, 9(1): 117–125. doi: 10.2136/vzj2009.0088 CrossRefGoogle Scholar
  15. Nüsch, A. K., Dietrich, P., Werban, U., et al., 2010. Acquisition and Reliability of Geophysical Data in Soil Science. 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane. 21–24Google Scholar
  16. Oberröhrmann, M., Klotzsche, A., Vereecken, H., et al., 2013. Optimization of Acquisition Setup for Cross-Hole GPR Full-Waveform Inversion Using Checkerboard Analysis. Near Surface Geophysics, 11(1967): 197–209. doi: 10.3997/1873-0604.2012045 CrossRefGoogle Scholar
  17. Robinson, D. A., Lebron, I., Lesch, S. M., et al., 2004. Minimizing Drift in Electrical Conductivity Measurements in High Temperature Environments Using the EM-38. Soil Science Society of America Journal, 68(2): 339–345. doi: 10.2136/sssaj2004.3390 CrossRefGoogle Scholar
  18. Rudolph, S., van der Kruk, J., von Hebel, C., et al., 2015. Linking Satellite Derived LAI Patterns with Subsoil Heterogeneity Using Large-Scale Ground-Based Electromagnetic Induction Measurements. Geoderma, 241–242: 262–271. doi: 10.1016/j.geoderma.2014.11.015 CrossRefGoogle Scholar
  19. Saey, T., De Smedt, P. D., Islam, M. M., et al., 2012. Depth Slicing of Multi-Receiver EMI Measurements to Enhance the Delineation of Contrasting Subsoil Features. Geoderma, 189–190: 514–521. doi: 10.1016/j.geoderma.2012.06.010 CrossRefGoogle Scholar
  20. Stadler, A., Rudolph, S., Kupisch, M., et al., 2015. Quantifying the Effects of Soil Variability on Crop Growth Using Apparent Soil Electrical Conductivity Measurements. European Journal of Agronomy, 64: 8–20. doi: 10.1016/j.eja.2014.12.004 CrossRefGoogle Scholar
  21. Virieux, J., Operto, S., 2009. An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 74(6): WCC1–WCC26. doi: 10.1190/1.3238367
  22. von Hebel, C. V., Rudolph, S., Mester, A., et al., 2014. Three-Dimensional Imaging of Subsurface Structural Patterns Using Quantitative Large-Scale Multiconfiguration Electromagnetic Induction Data. Water Resources Research, 50(3): 2732–2748. doi: 10.1002/2013wr014864 CrossRefGoogle Scholar
  23. Yang, X., Klotzsche, A., Meles, G. A., et al., 2013a. Improvements in Crosshole GPR Full-Waveform Inversion and Application on Data Measured at the Boise Hydrogeophysics Research Site. Journal of Applied Geophysics, 99: 114–124. doi: 10.1016/j.jappgeo.2013.08.007 CrossRefGoogle Scholar
  24. Yang, X., van der Kruk, J., Bikowski, J., et al., 2013b. Frequency-Domain Full-Waveform Inversion of GPR Data. Near-Surface Geophysics and Environment Protection, 8409(12): 344–348Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jan van der Kruk
    • 1
    • 2
  • Nils Gueting
    • 1
  • Anja Klotzsche
    • 1
    • 2
  • Guowei He
    • 1
    • 2
  • Sebastian Rudolph
    • 1
    • 4
  • Christian von Hebel
    • 1
    • 2
  • Xi Yang
    • 1
  • Lutz Weihermüller
    • 1
  • Achim Mester
    • 3
  • Harry Vereecken
    • 1
    • 2
  1. 1.Agrosphere (IBG-3)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Centre for High-Performance Scientific Computing in Terrestrial Systems (TerrSys)JülichGermany
  3. 3.Electronic Systems (ZEA-2)Forschungszentrum Jülich GmbHJülichGermany
  4. 4.British Geological SurveyEnvironmenal Science CentreKey Worth, NottinghamUK

Personalised recommendations