Advertisement

Journal of Earth Science

, Volume 26, Issue 6, pp 821–826 | Cite as

A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach

  • Yixin Ye
  • Xiangyun Hu
  • Dong Xu
Article

Abstract

A goal-oriented adaptive finite element (FE) method for solving 3D direct current (DC) resistivity modeling problem is presented. The model domain is subdivided into unstructured tetrahedral elements that allow for efficient local mesh refinement and flexible description of complex models. The elements that affect the solution at each receiver location are adaptively refined according to a goal-oriented posteriori error estimator using dual-error weighting approach. The FE method with adapting mesh can easily handle such structures at almost any level of complexity. The method is demonstrated on two synthetic resistivity models with analytical solutions and available results from integral equation method, so the errors can be quantified. The applicability of the numerical method is illustrated on a resistivity model with a topographic ridge. Numerical examples show that this method is flexible and accurate for geometrically complex situations.

Key Words

adaptive finite element dual-error weighting approach unstructured mesh 3D resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Babuška, I., Rheinboldt, W. C., 1978. A-Posteriori Error Estimates for the Finite Element Method. International Journal for Numerical Methods in Engineering, 12(10): 1597–1615. doi: 10.1002/nme.1620121010 CrossRefGoogle Scholar
  2. Bank, R. E., Xu, J. C., 2003. Asymptotically Exact a Posteriori Error Estimators, Part II: General Unstructured Grids. SIAM Journal on Numerical Analysis, 41: 2313–2332CrossRefGoogle Scholar
  3. Barrett, R., Berry, M., Chan, T. F., et al., 2006. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  4. Blome, M., Maurer, H. R., Schmidt, K., 2009. Advances in Three-Dimensional Geoelectric Forward Solver Techniques. Geophysical Journal International, 176(3): 740–752. doi: 10.1111/j.1365-246x.2008.04006.x CrossRefGoogle Scholar
  5. Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155CrossRefGoogle Scholar
  6. Huang, J. G., Ruan, B. Y., Bao, G. S., 2003. Finite Element Method for IP Modeling on 3-D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 28(3): 323–326 (in Chinese with English Abstract)Google Scholar
  7. Hvoždara, M., Kaikkonen, P., 1994. The Boundary Integral Calculations of the Forward Problem for D.C. Sounding and MMR Methods for a 3-D Body near a Vertical Contact. Studia Geophysica et Geodætica, 38(4): 375–398. doi: 10.1007/bf02296169 CrossRefGoogle Scholar
  8. Key, K., Weiss, C., 2006. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 71(6): G291–G299. doi: 10.1190/1.2348091 CrossRefGoogle Scholar
  9. Li, Y. G., Key, K., 2007. 2D Marine Controlled-Source Electromagnetic Modeling: Part 1—An Adaptive Finite-Element Algorithm. Geophysics, 72(2): WA51–WA62. doi: 10.1190/1.2432262
  10. Li, Y. G., Pek, J., 2008. Adaptive Finite Element Modelling of Two-Dimensional Magnetotelluric Fields in General Anisotropic Media. Geophysical Journal International, 175(3): 942–954. doi: 10.1111/j.1365-246x.2008.03955.x CrossRefGoogle Scholar
  11. Li, Y. G., Spitzer, K., 2005. Finite Element Resistivity Modelling for Three-Dimensional Structures with Arbitrary Anisotropy. Physics of the Earth and Planetary Interiors, 150(1–3): 15–27. doi: 10.1016/j.pepi.2004.08.014 CrossRefGoogle Scholar
  12. Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934. doi: 10.1046/j.1365-246x.2002.01819.x CrossRefGoogle Scholar
  13. Ovall, J. S., 2004. Duality-Based Adaptive Refinement for Elliptic: [Dissertation]. University of California, San DiegoGoogle Scholar
  14. Ovall, J. S., 2005. Asymptotically Exact Functional Error Estimators Based on Superconvergent Gradient Recovery. Numerical Mathematics, 102: 543–558CrossRefGoogle Scholar
  15. Penz, S., Chauris, H., Donno, D., et al., 2013. Resistivity Modelling with Topography. Geophysical Journal International, 194(3): 1486–1497CrossRefGoogle Scholar
  16. Pridmore, D., Hohmann, G. W., Ward, S. H., et al., 1981. An Investigation of Finite-Element Modeling for Electrical and Electromagnetic Modelling Data in Three Dimensions. Geophysics, 46: 1009–1024CrossRefGoogle Scholar
  17. Qiang, J. K., Luo, Y. Z., 2007. The Resistivity FEM Numerical Modeling on 3D Undulating Topography. Chinese J. Geophys., 50(5): 1606–1613 (in Chinese with English Abstract)Google Scholar
  18. Ren, Z. Y., Tang, J. T., 2010. 3D Direct Current Resistivity Modeling with Unstructured Mesh by Adaptive Finite-Element Method. Geophysics, 75(1): H7–H17CrossRefGoogle Scholar
  19. Ruan, B. Y., Xiong, B., Xu, S. Z., 2001. Finite Element Method for Modeling Resistivity Sounding on 3D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 26(1): 73–77 (in Chinese with English Abstract)Google Scholar
  20. Rücker, C., Günther, T., Spitzer, K., 2006. Three-Dimensional Modelling and Inversion of DCResistivity Data Incorporating Topography-I. Modelling. Geophysical Journal International, 166(2): 495–505. doi: 10.1111/j.1365-246x.2006.03010.x CrossRefGoogle Scholar
  21. Sasaki, Y., 1994. 3-D Resistivity Inversion Using the Finite-lement Method. Geophysics, 59(12): 1839–1848. doi: 10.1190/1.1443571 CrossRefGoogle Scholar
  22. Si, H., 2003. TETGEN: A 3D Delaunay Tetrahedral Mesh Generator. http://tetgen.berlios.de. [2015.11.10]Google Scholar
  23. Tang, J. T., Wang, F. Y., Xiao, X., et al., 2011. 2.5-D DCResistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 22(1): 124–130CrossRefGoogle Scholar
  24. Wang, W., Wu, X. P., Spitzer, K., 2013. Three-Dimensional DC Anisotropic Resistivity Modelling Using Finite-Elements on Unstructured Grids. Geophysical Journal International, 193(2): 734–746. doi: 10.1093/gji/ggs124 CrossRefGoogle Scholar
  25. Weiss, C. J., 2001. A Matrix-Free Approach to Solving the Fully 3D Electromagnetic Induction Problem. 71st Annual International Meeting, SEG, Expanded AbstractsGoogle Scholar
  26. Wu, X. P., Wang, T. T., 2003. A 3-D Finite Element Resistivity Forward Modeling Using Conjugate Gradient Algorithm. Chinese J. Geophys., 46(3): 428–432 (in Chinese with English Abstract)Google Scholar
  27. Xu, S. Z., 1994. The Finite Element Method in Geophysics. Science Press, Beijing (in Chinese)Google Scholar
  28. Xu, S. Z., Liu, B., Ruan, B. Y., 1994. The Finite Element Method for Solving Anomalous Potential for Resistivity Surveys. Chinese J. Geophys., 37(S2): 511–515 (in Chinese with English Abstract)Google Scholar
  29. Zhou, B., Greenhalgh, S. A., 2001. Finite Element Three-Dimensional Direct Current Resistivity Modelling: Accuracy and Efficiency Considerations. Geophysical Journal International, 145: 679–688CrossRefGoogle Scholar
  30. Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method (5th Ed.), Basic Foundation. Butterworth-Heinemann, ElsevierGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fundamental Science on Radioactive Geology and Exploration Technology LaboratoryEast China Institute of TechnologyNanchangChina
  2. 2.Hubei Subsurface Multi-scale Imaging LabChina University of GeosciencesWuhanChina

Personalised recommendations