Journal of Earth Science

, Volume 26, Issue 6, pp 791–798 | Cite as

Reverse-time prestack depth migration of GPR data from topography for amplitude reconstruction in complex environments

  • John H. Bradford


With increased computational power, reverse-time prestack depth migration (RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar (GPR) applications. Complex topography alters the wavefield kinematics making for a challenging imaging problem. Model simulations show that topographic variation can substantially distort reflection amplitudes due to irregular wavefield spreading, attenuation anomalies due to irregular path lengths, and focusing and defocusing effects at the surface. The effects are magnified when the topographic variations are on the same order as the depth of investigation—a situation that is often encountered in GPR investigations. Here, I use a full wave-equation RT-PSDM algorithm to image GPR data in the presence of large topographic variability relative to the depth of investigation. The source and receiver wavefields are propagated directly from the topographic surface and this approach inherently corrects for irregular kinematics, spreading and attenuation. The results show that when GPR data are acquired in areas of extreme topography, RT-PSDM can accurately reconstruct reflector geometry as well as reflection amplitude.

Key Words

reverse-time prestack depth migration ground-penetrating radar topography wavefield reflector geometry reflection amplitude 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Botelho, M. A., Mufti, I. R., Neto, V. P., 1998. Multishot Prestack Depth Migration: An Application on Wide- Angle Reflection and Refraction GPR Data. SEG Technical Program Expanded Abstracts 1998, 1393–1396. doi: 10.1190/1.1820166 CrossRefGoogle Scholar
  2. Bradford, J. H., 2006. Applying Reflection Tomography in the Postmigration Domain to Multifold Ground-Penetrating Radar Data. Geophysics, 71(1): K1–K8. doi: 10.1190/1.2159051 CrossRefGoogle Scholar
  3. Bradford, J. H., 2008. Measuring Water Content Heterogeneity Using Multifold GPR with Reflection Tomography. Vadose Zone Journal, 7(1): 184–193. doi: 10.2136/vzj2006.0160 CrossRefGoogle Scholar
  4. Bradford, J. H., 2012. GPR Prestack Amplitude Recovery for Radiation Patterns Using a Full Wave-Equation, Reverse-Time Migration Algorithm. SEG Technical Program Expanded Abstracts 2012, 1–5. doi: 10.1190/segam2012-1444.1 CrossRefGoogle Scholar
  5. Chattopadhyay, S., McMechan, G. A., 2008. Imaging Conditions for Prestack Reverse-Time Migration. Geophysics, 73(3): S81–S89. doi: 10.1190/1.2903822 CrossRefGoogle Scholar
  6. Deng, F., McMechan, G. A., 2007. True-Amplitude Prestack Depth Migration. Geophysics, 72(3): S155–S166. doi: 10.1190/1.2714334 CrossRefGoogle Scholar
  7. Engheta, N., Papas, C. H., Elachi, C., 1982. Radiation Patterns of Interfacial Dipole Antennas. Radio Science, 17(6): 1557–1566. doi: 10.1029/rs017i006p01557 CrossRefGoogle Scholar
  8. Fisher, E., McMechan, G. A., Annan, A. P., et al., 1992. Examples of Reverse-Time Migration of Single-Channel, Ground-Penetrating Radar Profiles. Geophysics, 57(4): 577–586. doi: 10.1190/1.1443271 CrossRefGoogle Scholar
  9. Lehmann, F., Green, A. G., 2000. Topographic Migration of Georadar Data: Implications for Acquisition and Processing. Geophysics, 65(3): 836–848. doi: 10.1190/1.1444781 CrossRefGoogle Scholar
  10. Leuschen, C. J., Plumb, R. G., 2001. A Matched-Filter-Based Reverse-Time Migration Algorithm for Ground-Penetrating Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 929–936. doi: 10.1109/36.921410 CrossRefGoogle Scholar
  11. Sanada, Y., Ashida, Y., 1999. An Imaging Algorithm for GPR Data. Symposium on the Application of Geophysics to Engineering and Environmental Problems 1999, Boston. 565–573. doi: 10.4133/1.2922652 Google Scholar
  12. Shragge, J., Irving, J., Artman, B., 2004. Shot-Profile Migration of GPR Data. Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft. 337–340Google Scholar
  13. Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res., 16: 574–582CrossRefGoogle Scholar
  14. Zhou, D., Huang, W. P., Xu, C. L., et al., 2001. The Perfectly Matched Layer Boundary Condition for Scalar Finite-Difference Time-Domain Method. IEEE Photonics Technology Letters, 13(5): 454–456. doi: 10.1109/68.920749 CrossRefGoogle Scholar
  15. Zhou, H., Sato, M., Liu H. J., 2005. Migration Velocity Analysis and Prestack Migration of Common-Transmitter GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 43(1): 86–91. doi: 10.1109/tgrs.2004.839920 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for Geophysical Investigation of the Shallow SubsurfaceBoise State UniversityBoiseUSA

Personalised recommendations