Advertisement

Journal of Earth Science

, Volume 26, Issue 4, pp 463–470 | Cite as

Least-squares seismic inversion with stochastic conjugate gradient method

  • Wei Huang
  • Hua-Wei Zhou
Article

Abstract

With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.

Keywords

least-squares seismic inversion stochastic conjugate gradient method data fitting Kirchhoff migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Claerbout, J. F., 2010. Basic Earth Imaging. © November 17, 2010. 67–69Google Scholar
  2. Dai, W., Wang, X., Schuster, G. T., 2011. Least-Squares Migration of Multisource Data with a Deblurring Filter. Geophysics, 76(5): R135–R146. doi: 10.1190/geo2010-0159.1 CrossRefGoogle Scholar
  3. Fletcher, R., Reeves, C., 1964. Function Minimization by Conjugate Gradients. The Computer Journal. 7(2): 149–154. doi: 10.1093/comjnl/7.2.149 CrossRefGoogle Scholar
  4. Godwin, J., Sava, P., 2010. Blended Source Imaging by Amplitude Encoding. SEG Technical Program Expanded Abstracts. 2010, 3125–3129. doi: 10.1190/1.3513495 Google Scholar
  5. Huang, W., Ma, H. D., Vigh, D., et al., 2013. Velocity Model Building with Long-Offset and Full-Azimuth Data: A Case History for Full-Waveform Inversion. SEG Technical Program Expanded Abstracts. 2013, 32: 4750–4754. doi: 10.1190/segam2013-1230.1 Google Scholar
  6. Jiang, H., Wilford, P., 2012. A Stochastic Conjugate Gradient Method for the Approximation of Functions. Journal of Computational and Applied Mathematics. 236(9): 2529–2544. doi:10.1016/j.cam.2011.12.012CrossRefGoogle Scholar
  7. Krebs, J. R., Anderson, J. E., Hinkley, D., et al., 2009. Fast Full-Wavefield Seismic Inversion Using Encoded Sources. Geophysics. 74(6): WCC177–WCC188. doi:10.1190/1.3230502CrossRefGoogle Scholar
  8. Nemeth, T., Wu, C. J., Schuster, G. T., 1999. Least-Squares Migration of Incomplete Reflection Data. Geophysics. 64(1): 208–221. doi:10.1190/1.1444517CrossRefGoogle Scholar
  9. Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. SIAM. 105–127. doi:10.1137/1.9780898718003Google Scholar
  10. Schraudolph, N. N., Graepel, T., 2003, Combining Conjugate Direction Methods with Stochastic Approximation of Gradients. In: Proc. 9th Intl. Workshop Artificial Intelligence and Statistics (AIstats), Society for Artificial Intelligence and Statistic. 7–13Google Scholar
  11. Suh, S. Y., Yeh, A., Wang, B., et al., 2010. Cluster Programming for Reverse Time Migration. The Leading Edge. 29(1): 94–97. doi:10.1190/1.3284058CrossRefGoogle Scholar
  12. Tarantola, A., 1984. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49: 1259–1266CrossRefGoogle Scholar
  13. Tibshirani, R., 1996. Regression Shrinkage and Selection via the LASSO. J. Royal Statistical Society, 58(1): 267–288Google Scholar
  14. van Leeuwen, T. V., Aravkin, A. Y., Herrmann, F. J., 2011. Seismic Waveform Inversion by Stochastic Optimization. International Journal of Geophysics. 2011: 1–18. doi:10.1155/2011/689041Google Scholar
  15. Vigh, D., Starr, E. W., 2008. 3D Prestack Plane-Wave, Full-Waveform Inversion. Geophysics. 73(5): VE135–VE144. doi:10.1190/1.2952623CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth & Atmospheric SciencesUniversity of HoustonHoustonUSA
  2. 2.College of Marine GeosciencesOcean University of ChinaQingdaoChina

Personalised recommendations