Advertisement

Journal of Earth Science

, Volume 26, Issue 1, pp 2–10 | Cite as

Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

  • Klaus Regenauer-LiebEmail author
  • Andrew Bunger
  • Hui Tong Chua
  • Arcady Dyskin
  • Florian Fusseis
  • Oliver Gaede
  • Rob Jeffrey
  • Ali Karrech
  • Thomas Kohl
  • Jie Liu
  • Vladimir Lyakhovsky
  • Elena Pasternak
  • Robert Podgorney
  • Thomas Poulet
  • Sheik Rahman
  • Christoph Schrank
  • Mike Trefry
  • Manolis Veveakis
  • Bisheng Wu
  • David A. Yuen
  • Florian Wellmann
  • Xi Zhang
Special Issue on Geohtermal Energy

Abstract

Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

Key Words

geothermal energy enhanced geothermal systems fracture mechanics creep dissolution precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Abe, H., Niitsuma, H., Murphy, H., 1999. Summary of Discussions, Structured Academic Review of HDR/HWR Reservoirs. Geothermics, 28: 671–676CrossRefGoogle Scholar
  2. Alevizos, S., Poulet, T., Veveakis, E., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 1. Theory and Steady State Considerations. Journal of Geophysical Research: Solid Earth, 119(6): 4558–4582Google Scholar
  3. Ashby, M. F., Gandhi, C., Taplin, D. M. R., 1979. Overview No. 3. Acta Metallurgica, 27: 699–729CrossRefGoogle Scholar
  4. Brown, D., DuTeaux, R., Kruger, P., et al., 1999. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs. Geothermics, 28: 553–572CrossRefGoogle Scholar
  5. Bunger, A. P., Zhang, X., Jeffrey, R., 2012. Parameters Affecting the Interaction among Closely Spaced Hydraulic Fractures. SPE Journal, 17: 292–306CrossRefGoogle Scholar
  6. Cuderman, J. F., Cooper, P. W., Chen, E. P., et al., 1981. A Multiple Fracturing Technique for Enhanced Gas Recovery. International Gas Conference, Los AngelesGoogle Scholar
  7. Dyskin, A., Pasternak, E., 2008. Rotational Mechanism of In-Plane Shear Crack Growth in Rocks under Compression. In: Potvin, Y., Carter, J., Dyskin, A., et al., eds., 1st Southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, Perth. 111–120Google Scholar
  8. Dyskin, A., Pasternak, E., 2010. Cracks in Cosserat Continuum-Macroscopic Modelling. In: Maugin, G., Metrikine, A., eds., Mechanics of Generalized Continua: One Hundred Years after the Cosserats. Springer, New York. 35–42Google Scholar
  9. Dyskin, A., Pasternak, E., 2013. Mechanism of In-Plane Fracture Growth in Particulate Materials Based on Relative Particle Rotations. Proc. 13th International Conference on Fracture, Bejing. S09–003Google Scholar
  10. Dyskin, A., Pasternak, E., 2014. Energy Criterion of In-Plane Fracture Propagation in Geomaterials with Rotating Particles. Proc. IWBDG, 14-27Google Scholar
  11. Dyskin, A., Pasternak, E., Bunger, A., et al., 2013. Blue Shift in the Spectrum of Arrival Times of Acoustic Signals Emitted during Laboratory Hydraulic Fracturing. In: Bunger, A. P., McLennan, J., Jeffrey, R., eds., The International Conference for Effective and Sustainable Hydraulic Fracturing. 467–476Google Scholar
  12. Fowler, A. C., Yang, X. S., 2003. Dissolution/Precipitation Mechanisms for Diagenesis in Sedimentary Basins. Journal of Geophysical Research: Solid Earth, 108: 2509CrossRefGoogle Scholar
  13. Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Granular Fluid Pump through the Middle Crust. Nature, 459: 974–977CrossRefGoogle Scholar
  14. Gaede, O., Karrech, A., Regenauer-Lieb, K., 2013. Anisotropic Damage Mechanics as a Novel Approach to Improve Pre- and Post-Failure Borehole Stability Analysis. Geophysical Journal International, 193: 1095–1109CrossRefGoogle Scholar
  15. Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 342: 502–516CrossRefGoogle Scholar
  16. Ghandi, C., Ashby, M. F., 1979. Overview No. 5 Fracture-Mechanism Maps for Materials which Cleave: F. C. C., B. C. C. and H. C. P. Metals and Ceramics. Acta Metallurgica, 27: 1565–1602CrossRefGoogle Scholar
  17. Gratier, J. P., Dysthe, D., Renard, F., 2013. The Role of Pressure Solution Creep in the Ductility of the Earth’s Upper Crust. Advances in Geophysics, 54: 47–179CrossRefGoogle Scholar
  18. Haimson, B., 2006. Micromechanisms of Borehole Instability Leading to Breakouts in Rocks. International Journal of Rock Mechanics & Mining Sciences, 44(2): 157–173CrossRefGoogle Scholar
  19. Karrech, A., Regenauer-Lieb, K., Poulet, T., 2011. Continuum Damage Mechanics for the Lithosphere. Journal of Geophysical Research, 116: B04205CrossRefGoogle Scholar
  20. Karrech, A., Schrank, C., Freij-Ayoub, R., et al., 2014. A Multi-Scaling Approach to Predict Hydraulic Damage of Poromaterials. International Journal of Mechanical Sciences, 78: 1–7CrossRefGoogle Scholar
  21. Liu, J., Karrech, A., Regenauer-Lieb, K., 2014. Combined Mechanical and Melting Damage Model for Geomaterials. Geophysical Journal International, 198(3): 1319–1328CrossRefGoogle Scholar
  22. Pasternak, E., Dyskin, A., 2012a. Frequency Signatures of Damage Localisation. Philosophical Magazine, 92: 3665–3679CrossRefGoogle Scholar
  23. Pasternak, E., Dyskin, A., 2012b. Intermediate Asymptotics for Scaling of Stresses at the Tip of Crack in Cosserat Continuum. 12th Intern. Conf. Fracture ICF12, Ottawa. T40.014Google Scholar
  24. Pasternak, E., Dyskin, A., 2012c. Spectral Indicator of Microseismic Localisation. Proc. Rock Engineering & Technology for Sustainable Underground Construction, Eurock. 131Google Scholar
  25. Poulet, T., Veveakis, E., Regenauer-Lieb, K., et al., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 3. The Role of Serpentinite in Episodic Tremor and Slip Sequences, and Transition to Chaos. Journal of Geophysical Research: Solid Earth, 119(6): 4606–4625Google Scholar
  26. Raj, R., 1982a. Creep in Polycrystalline Aggregates by Matter Transport through a Liquid Phase. Journal of Geophysical Research: Solid Earth, 87: 4731–4739CrossRefGoogle Scholar
  27. Raj, R., 1982b. Intergranular Creep Fracture in Aggressive Environnments. Acta Metallurgica, 30: 1259–1268CrossRefGoogle Scholar
  28. Regenauer-Lieb, K., 1999. Dilatant Plasticity Applied to Alpine Collision: Ductile Void Growth in the Intraplate Area beneath the Eifel Volcanic Field. Journal of Geodynamics, 27: 1–21CrossRefGoogle Scholar
  29. Regenauer-Lieb, K., Veveakis, M., Poulet, T., et al., 2013a. Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Applications. Journal of Coupled Systems and Multiscale Dynamics, 1(3): 281–323CrossRefGoogle Scholar
  30. Regenauer-Lieb, K., Veveakis, M., Poulet, T., et al., 2013b. Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Theory. Journal of Coupled Systems and Multiscale Dynamics, 1(1): 49–73CrossRefGoogle Scholar
  31. Regenauer-Lieb, K., Yuen, D., Fusseis, F., 2009. Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities. Pure and Applied Geophysics, 166: 1–24CrossRefGoogle Scholar
  32. Rybacki, E., Wirth, R., Dresen, G., 2007. High-Strain Creep of Feldspar Rocks: Implications for Cavitation and Ductile Failure in the Lower Crust. Geophysical Research Letters, 35: L04304Google Scholar
  33. Schrank, C., Fusseis, F., Karrech, A., et al., 2012. Thermal-Elastic Stresses and the Criticality of the Continental Crust. Geochemistry, Geophysics, Geosystems, 13: Q09005. doi:10.1029/2012GC004085CrossRefGoogle Scholar
  34. Somerville, M., Wyborn, D., Chopra, P., et al., 1994. Hot Dry Rock Feasibility Study. Energy Research & Development Corporation, ERDC Report. 133Google Scholar
  35. Veveakis, E., Poulet, T., Alevizos, S., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 2. Transient Considerations. Journal of Geophysical Research: Solid Earth, 119(6): 4583–4605Google Scholar
  36. Zhu, C., Lu, P., 2009. Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems: 3. Saturation States of Product Minerals and Reaction Paths. Geochimica et Cosmochimica Acta, 73: 3171–3200CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Klaus Regenauer-Lieb
    • 1
    • 2
    • 3
    Email author
  • Andrew Bunger
    • 4
  • Hui Tong Chua
    • 1
  • Arcady Dyskin
    • 1
  • Florian Fusseis
    • 5
  • Oliver Gaede
    • 1
    • 6
  • Rob Jeffrey
    • 2
  • Ali Karrech
    • 1
  • Thomas Kohl
    • 7
  • Jie Liu
    • 1
    • 8
  • Vladimir Lyakhovsky
    • 9
  • Elena Pasternak
    • 1
  • Robert Podgorney
    • 10
  • Thomas Poulet
    • 2
  • Sheik Rahman
    • 3
  • Christoph Schrank
    • 1
    • 6
  • Mike Trefry
    • 12
  • Manolis Veveakis
    • 2
  • Bisheng Wu
    • 2
  • David A. Yuen
    • 11
    • 14
  • Florian Wellmann
    • 13
  • Xi Zhang
    • 2
  1. 1.School of Petroleum EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Earth Science and Resource EngineeringCSIROKensingtonAustralia
  3. 3.School of Earth and EnvironmentThe University of Western AustraliaPerthAustralia
  4. 4.Department of Civil and Environmental Engineering & Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA
  5. 5.School of GeosciencesUniversity of EdinburghEdinburghUK
  6. 6.Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences, Earth SystemsQueensland University of TechnologyBrisbaneAustralia
  7. 7.Karlsruhe Institute of TechnologyKarlsruheGerman
  8. 8.School of Earth Science and Geological EngineeringSun Yat-Sen UniversityGuangzhouChina
  9. 9.Geological Survey of IsraelJerusalemIsrael
  10. 10.Idaho National LaboratoryIdaho FallsUSA
  11. 11.School of Environmental StudiesChina University of GeosciencesWuhanChina
  12. 12.Land and WaterCSIROFloreat ParkAustralia
  13. 13.Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversityAachenGermany
  14. 14.Department of Earth Sciences and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations