Advertisement

Journal of Earth Science

, Volume 25, Issue 6, pp 939–958 | Cite as

High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source

  • Yanbin Wang
  • Guoyin Shen
Article

Abstract

We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.

Key Words

high pressure synchrotron melts liquid structure magma dynamics mantle dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Abe, Y., 1993, Physical State of the Very Early Earth. Lithos, 30(3–4): 223–235Google Scholar
  2. Abe, Y., 1997. Thermal and Chemical Evolution of the Terrestrial Magma Ocean. Physics of the Earth and Planetary Interiors, 100(1–4): 27–39Google Scholar
  3. Agee, C. B., Walker, D., 1988. Static Compression and Olivine Floatation in Ultrabasic Silicate Liquid. J. Geophys. Res., 93(B4): 3437–3449Google Scholar
  4. Allwardt, J. R., Stebbins, J. F., Schmidt, B. C., et al., 2005. Aluminum Coordination and the Densification of High-Pressure Aluminosilicate Glasses. American Mineralogist, 90(7): 1218–1222Google Scholar
  5. Anderson, O. L., 1995. Equations of State of Solids for Geophysics and Cramic Sience. Oxford University Press, OxfordGoogle Scholar
  6. Bashforth, F., Adams, J. C., 1892. An Attempt to Test the Theory of Capillary Action. Cambridge University Press and Deighton Bell & Co., CambridgeGoogle Scholar
  7. Beckmann, F., Herzen, J., Haibel, A., et al., 2008. High Density Resolution in Synchrotron-Radiation-Based Attenuation-Contrast Microtomography. Paper Presented at Proc. SPIE, San DiegoGoogle Scholar
  8. Birch, F., 1952. Elaticity and Constitution of the Earth’s Interior. J. Geophys. Res., 57: 227–286Google Scholar
  9. Bottinga, Y., Weill, D. F., 1972. The Viscosity of Magmatic Silicate Liquids: A Model Calculation. American Journal of Science, 272(5): 438–475. doi:10.2475/ajs.272.5.438.Google Scholar
  10. Brazhkin, V., Farnan, I., Funakoshi, K., et al., 2010. Structural Transformations and Anomalous Viscosity in the B2O3 Melt under High Pressure. Phys. Rev. Lett., 105: 115701Google Scholar
  11. Brizard, M., Megharfi, M., Mahé, E., et al., 2005. Design of a High Precision Falling-Ball Viscometer. Review of Scientific Instruments, 76(2): 025109Google Scholar
  12. Butt, H. J., Graf, K., Kappl, M., 2003. Physics and Chemistry of Interfaces. Wyllie-VCH Verlag, Darmstadt. 361Google Scholar
  13. Coltice, N., Moreira, M., Hernlund, J., et al., 2011. Crystallization of a Basal Magma Ocean Recorded by Helium and Neon. Earth Planet. Sci. Lett., 308(1–2): 193–199Google Scholar
  14. Cromer, D. T., 1969. Compton Scattering Factors for Aspherical Free Atoms. The Journal of Chemical Physics, 50: 4857–4859Google Scholar
  15. Cromer, D. T., Mann, J. B., 1967. Compton Scattering Factors for Spherically Symmetric Free Atoms. The Journal of Chemical Physics, 47: 1892–1893Google Scholar
  16. Dobson, D. P., Crichton, W. A., Vocadlo, L., et al., 2000. In Situ Measurement of Viscosity of Liquids in the Fe-FeS System at High Pressures and Temperatures. American Mineralogist, 85: 1838–1842Google Scholar
  17. Faber, T. E., Ziman, J. M., 1965. A Theory of the Electrical Properties of Liquid Metals. Philosophical Magazine, 11(109): 153–173Google Scholar
  18. Faxén, H., 1922. Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer Zähen Flüssigkeit, Die Zwischen Zwei Parallelen Ebenen Wänden Eingeschlossen Ist. Annalen der Physik, 373(10): 89–119Google Scholar
  19. Funakoshi, K., 1995. Energy-Dispersive X-Ray Diffraction Study for Alkali Silicate Melts Using Synchrotron Radiation Under High Pressure and Temperature: [Dissertation]. Tokyo Institute of Technology, Tokyo. 117Google Scholar
  20. Funamori, N., Yamamoto, S., Yagi, T., et al., 2004. Exploratory Studies of Silicate Melt Sructure at High Pressures and Temperatures by In Situ X-Ray Diffraction. J. Geophys. Res., 109: B03203Google Scholar
  21. Gaetani, G., Grove, T., 1999. Wetting of Mantle Olivine by Sulfide Melt: Implications for Re/Os Ratios in Mantle Peridotite and Late-Stage Core Formation. Earth Planet. Sci. Lett., 169: 147–163Google Scholar
  22. Genge, M. J., Price, G. D., Jones, A. P., 1995. Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures: Implications for Carbonatite Magmas. Earth Planet. Sci. Lett., 131(3–4): 225–238Google Scholar
  23. Ghiorso, M. S., 2004. An Equation of State for Silicate Melts. III. Analysis of Soichiometric Liquids at Elevated Pressure: Shock Compression Data, Molecular Dynamics Simulations and Mineral Fusion Curves. American Journal of Science, 304(8–9): 752–810Google Scholar
  24. Giordano, D., Russell, J. K., Dingwell, D. B., 2008. Viscosity of Magmatic Liquids: A Model. Earth Planet. Sci. Lett., 271(1–4): 123–134Google Scholar
  25. Greaves, G. N., Sen, S., 2007. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. Advances in Physics, 56(1): 1–166Google Scholar
  26. Hansen, F. K., 1993. Surface Tension by Image Analysis: Fast and Automatic Measurements of Pendant and Sessile Drops and Bubbles. Journal of Colloid and Interface Science, 160(1): 209–217Google Scholar
  27. Henderson, G. S., Calas, G., Stebbins, J. F., 2006. The Structure of Silicate Glasses and Melts. Elements, 2: 269–273Google Scholar
  28. Herzfeld, K. F., Litovitz, T. A., 1959. Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York. 535Google Scholar
  29. Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen-Depleted Liquid Outer Core of the Earth. Nature, 479: 513–516Google Scholar
  30. Jing, Z., Karato, S. I., 2008. Compositional Effect on the Pressure Derivatives of Bulk Modulus of Silicate Melts. Earth Planet. Sci. Lett., 272(1–2): 429–436Google Scholar
  31. Jing, Z., Karato, S. I., 2011. A New Approach to the Equation of State of Silicate Melts: An Application of the Theory of Hard Sphere Mixtures. Geochimica et Cosmochimica Acta, 75(22): 6780–6802Google Scholar
  32. Jing, Z., Wang, Y., Kono, Y., et al., 2014. Moon’s Molten Outer Core: Composition, Density and Thermal State. Earth Planet. Sci. Lett., 396: 78–87Google Scholar
  33. Jones, A., Genge, M., Carmody, L., 2013. Carbonate Melts and Carbonatites. Reviews in Mineralogy and Geochemistry, 75: 289–322Google Scholar
  34. Kanzaki, M., Kurita, K., Fujii, T., et al., 1987. A New Technique to Measure the Viscosity and Density of Silicate Melts at High Pressure, In: Manghnani, M. H., Syono, Y., eds., High-Pressure Research in Mineral Physics. Terrapub/AGU, Tokyo. 195–200Google Scholar
  35. Kapilashrami, E., Jakobsson, A., Seetharaman, S., et al., 2003. Studies of the Wetting Characteristics of Liquid Iron on Dense Alumina by the X-Ray Sessile Drop Technique. Metall. and Materi. Trans. B, 34(2): 193–199Google Scholar
  36. Karki, B. B., 2010. First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties. Reviews in Mineralogy and Geochemistry, 71(1): 355–389Google Scholar
  37. Katayama, Y., 1996. Density Measurements of Non-Cystalline Materials under High Pressure and High Temperature. High Pressure Research, 14: 383–391Google Scholar
  38. Katayama, Y., 2002. In Situ Observation of a First-Order Liquid-Liquid Transition in Phosphorus. Journal of Non-Crystalline Solids, 312–314: 8–14Google Scholar
  39. Katayama, Y., Tsuji, K., Chen, J. Q., et al., 1993. Density of Liquid Tellurium under High Pressure. Journal of Non-Crystalline Solids, 156–158(Part 2): 687–690Google Scholar
  40. Ketcham, R. A., Carlson, W. D., 2001. Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Computers & Geosciences, 27(4): 381–400Google Scholar
  41. Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014a. Ultralow Viscosity of Carbonate Melts at High Pressures. Nat. Commun., 5: 5091Google Scholar
  42. Kono, Y., Park, C., Kenney-Benson, C., et al., 2014b. Toward Comprehensive Studies of Liquids at High Pressures and High Temperatures: Combined Structure, Elastic Wave Velocity, and Viscosity Measurements in the Paris-Edinburgh Cell. Physics of the Earth and Planetary Interiors, 228: 269–280Google Scholar
  43. Kono, Y., Kenney-Benson, C., Kenney-Benson, C., et al., 2013. Anomaly in the Viscosity of Liquid KCl at High Pressures. Physical Review B, 87(2): 024302Google Scholar
  44. Kono, Y., Park, C., Sakamaki, T., et al., 2012. Simultaneous Structure and Elastic Wave Velocity Measurement of SiO2 Glass at High Pressures and High Temperatures in a Paris-Edinburgh Cell. Review of Scientific Instruments, 83(3): 33905–33908Google Scholar
  45. Kung, J., Li, B., Uchida, T., et al., 2004. In Situ Measurements of Sound Velocities and Densities across the Orthopyroxene—High-Pressure Clinopyroxene Tansition in MgSiO3 at High Pressure. Physics of the Earth and Planetary Interiors, 147(1): 27–44Google Scholar
  46. Kushiro, I., Mysen, B. O., 2002. A Possible Effect of Melt Sructure on the Mg-Fe2+ Partitioning between Olivine and Melt. Geochimica et Cosmochimica Acta, 66(12): 2267–2272Google Scholar
  47. Labrosse, S., 2003. Thermal and Magnetic Evolution of the Earth’s Core. Physics of the Earth and Planetary Interiors, 140(1–3): 127–143Google Scholar
  48. Labrosse, S., Hernlund, J. W., Coltice, N., 2007. A Crystallizing Dense Magma Ocean at the Base of the Earth’s Mantle. Nature, 450(7171): 866–869Google Scholar
  49. Lange, R. L., Carmichael, I. S. E., 1990. Thermodynamic Properties of Silicate Liquids with Emphasis on Density, Thermal Expansion and Compressibility. Reviews in Mineralogy and Geochemistry, 24(1): 25–64Google Scholar
  50. Lee, S. K., 2011. Simplicity in Melt Densification in Multicomponent Magmatic Reservoirs in Earth’s Interior Revealed by Multinuclear Magnetic Resonance. Proceedings of the National Academy of Sciences, 108(17): 6847–6852Google Scholar
  51. Lee, S. K., Eng, P. J., Mao, H. K., 2014. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-Ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 78(1): 139–174Google Scholar
  52. Lesher, C. E., 2010. Self-Diffusion in Silicate Melts: Theory, Observations and Applications to Magmatic Systems, Reviews in Mineralogy and Geochemistry, 72(1): 269–309Google Scholar
  53. Lesher, C. E., Wang, Y., Gaudio, S., et al., 2009. Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 174(1–4): 292–301Google Scholar
  54. Li, B., Kung, J., Uchida, T., et al., 2005. Simultaneous Equation of State, Pressure Calibration and Sound Velocity Measurements to Lower Mantle Pressures Using Multi-Anvil Apparatus, In: Chen, J., Wang, Y., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 49–66Google Scholar
  55. Lorch, E., 1969. Neutron Diffraction by Germania, Silica and Radiation-Damaged Silica Glasses. Journal of Physics C: Solid State Physics, 2(2): 229Google Scholar
  56. Maude, A. D., 1961. End Effects in a Falling-Sphere Viscometer. British Journal of Applied Physics, 12(6): 293Google Scholar
  57. Mezouar, M., 2002. Multichannel Collimator for Structural Investigation of Liquids and Amorphous Materials at High Pressures and Temperatures. Rev. Sci. Instrum., 73(10): 3570Google Scholar
  58. Minarik, W. G., Ryerson, F. J., Watson, E. B., 1996. Textural Entrapment of Core-Forming Melts. Science, 272(5261): 530–533Google Scholar
  59. Morard, G., Sanloup, C., Guillot, B., et al., 2008a. In Situ Structural Investigation of Fe-S-Si Immiscible Liquid System and Evolution of Fe-S Bond Properties with Pressure. J. Geophys. Res., 113: B10205Google Scholar
  60. Morard, G., Andrault, D., Guignot, N., et al., 2008b. In Situ Determination of Fe-Fe3S Phase Diagram and Liquid Structural Properties up to 65 GPa. Earth and Planetary Science Letters, 272(3–4): 620–626Google Scholar
  61. Morard, G., Sanloup, C., Fiquet, G., et al., 2007. Structure of Eutectic Fe-FeS Melts to Pressures up to 17 GPa: Implications for Planetary Cores. Earth Planet. Sci. Lett., 263(1–2): 128–139Google Scholar
  62. Morard, G., Siebert, J., Andrault, D., et al., 2013. The Earth’s Core Composition from High Pressure Density Measurements of Liquid Iron Alloys. Earth Planet. Sci. Lett., 373: 169–178Google Scholar
  63. Mysen, B., 1983. The Structure of Silicate Melts. Ann. Rev. Earth Planet. Sci., 11: 75–97Google Scholar
  64. Mysen, B., Richet, P., 2005. Chapter 4 Melt and Glass Structure: Basic Concepts, In: Mysen, B., Richet, P., eds., Silicate Glasses and Melts. Elsevier, Amsterdam. 101–129Google Scholar
  65. Nishida, K., Ohtani, E., Urakawa, S., et al., 2011. Density Measurement of Liquid FeS at High Pressures Using Synchrotron X-Ray Absorption. American Mineralogist, 96(5): 864Google Scholar
  66. Nishikawa, N., Iijima, T., 1984. Correction for Intensity Data in Energy-Dispersive X-Ray Diffractometry of Liquid, Application to Carbon Tetrachloride. Bull. Chem. Soc. Jpn., 57: 1750–1759Google Scholar
  67. Phillips, J. C., 1979. Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys. Journal of Non-Crystalline Solids, 34(2): 153–181Google Scholar
  68. Poe, B. T., Romano, C., Liebske, C., et al., 2006. High-Temperature Viscosity Measurements of Hydrous Albite Liquid Using In-Situ Falling-Sphere Viscometry at 2.5 GPa. Chemical Geology, 229(1–3): 2–9Google Scholar
  69. Rigden, S. M., Ahrens, T. J., Stolper, E. M., 1988. Shock Compression of Molten Silicate: Results for a Model Basaltic Composition. J. Geophys. Res., 93(B1): 367–382Google Scholar
  70. Rotenberg, Y., Boruvka, L., Neumann, A. W., 1983. Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces. Journal of Colloid and Interface Science, 93(1): 169–183Google Scholar
  71. Rutter, M. D., Secco, R. A., Liu, H., et al., 2002a. Viscosity of Liquid Fe at High Pressure. Physical Review B, 66(6): 060102Google Scholar
  72. Rutter, M. D., Secco, R. A., Uchida, T., et al., 2002b. Towards Evaluating the Viscosity of the Earth’s Outer Core: An Experimental High Pressure Study of Liquid Fe-S (8.5 wt.% S). Geophysical Research Letters, 29(8): 58-51–58-54Google Scholar
  73. Sakamaki, T., Kono, Y., Wang, Y., et al., 2014a. Contrasting Sound Velocity and Intermediate-Range Structural Order between Polymerized and Depolymerized Silicate Glasses under Pressure. Earth Planet. Sci. Lett., 391: 288–295Google Scholar
  74. Sakamaki, T., Wang, Y., Park, C., et al., 2014b. Contrasting Behavior of Intermediate-Range Order Sructures in Jadeite Glass and Melt. Physics of the Earth and Planetary Interiors, 228: 281–286Google Scholar
  75. Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2009. Measurement of Hydrous Peridotite Magma Density at High Pressure Using the X-Ray Absorption Method. Earth Planet. Sci. Lett., 287(3–4): 293–297Google Scholar
  76. Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2010. Density of Dry Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 95(1): 144–147Google Scholar
  77. Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2011. Density of Carbonated Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 96(4): 553–557Google Scholar
  78. Sakamaki, T., Suzuki, A., Ohtani, E., 2006. Stability of Hydrous Melt at the Base of the Earth’s Upper Mantle. Nature, 439(7073): 192–194Google Scholar
  79. Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geosci., 6(12): 1041–1044Google Scholar
  80. Sakamaki, T., Wang, Y., Park, C., et al., 2012. Structure of Jadeite Melt at High Pressures up to 4.9 GPa. Journal of Applied Physics, 111(11): 112623–112625Google Scholar
  81. Sanloup, C., Fiquet, G., Gregoryanz, E., et al., 2004. Effect of Si on Liquid Fe Compressibility: Implications for Sound Velocity in Core Materials. Geophysical Research Letters, 31: L07604Google Scholar
  82. Sanloup, C., Guyot, F., Gillet, P., 2000. Density Measurements of Liquid Fe-S Alloys at High Pressure. Geophysical Research Letters, 27: 811–814Google Scholar
  83. Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, CambridgeGoogle Scholar
  84. Secco, R. A., Rutter, M. D., Balog, S. P., et al., 2002. Viscosity and Density of Fe-S Liquids at High Pressures. Journal of Physics: Condensed Matter, 14(44): 11325Google Scholar
  85. Shannon, M. C., Agee, C. B., 1998. Percolation of Core Melts at Lower Mantle Conditions. Science, 280(5366): 1059–1061Google Scholar
  86. Shen, G., Prakapenka, V. B., Rivers, M. L., et al., 2004. Structure of Liquid Iron at Pressures up to 58 GPa. Physical Review Letters, 92: 185701Google Scholar
  87. Shenoy, G. K., Viccaro, P. J., Mills, D. M., 1988. Characteristics of the 7-GeV Advanced Photon Source: A Guide for Users. Rep. ANL-88-9. Argonne National Laboratory, Argonne. 1–57Google Scholar
  88. Stebbins, J. F., 1995. Dynamics and Structure of Slicate and Oxide Melts: Nuclear Magnetic Resonance Studies. Reviews in Mineralogy and Geochemistry, 32(1): 191–246Google Scholar
  89. Stebbins, J. F., Xue, X., 2014. NMR Spectroscopy in Inorganic Earth Materials, In: Henderson, G. S., Neuville, D., eds., Spectroscopic and Other Characterization Methods in Mineralogy and Materials Sciences. Mineralogical Society of America, Chantilly, VA. 650–653Google Scholar
  90. Stevenson, D. J., 2003. Planetary Magnetic Fields. Earth Planet. Sci. Lett., 208(1–2): 1–11Google Scholar
  91. Susman, S., Volin, K. J., Price, D. L., et al., 1991. Intermediate-Range Order in Permanently Densified Vitreous SiO2: A Neutron-Diffraction and Molecular-Dynamics Study. Physical Review B, 43(1): 1194–1197Google Scholar
  92. Suzuki, A., Ohtani, E., Terasaki, H., et al., 2005. Viscosity of Silicate Melts in CaMgSi2O6-NaAlSi2O6 System at High Pressure. Physics and Chemistry of Minerals, 32(2): 140–145Google Scholar
  93. Terasaki, H., Frost, D. J., Rubie, D. C., et al., 2005. The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure: Implications for Martian Core Formation. Earth Planet. Sci. Lett., 232(3–4): 379–392Google Scholar
  94. Terasaki, H., Suzuki, A., Ohtani, E., et al., 2006. Effect of Pressure on the Viscosity of Fe-S and Fe-C Liquids up to 16 GPa. Geophysical Research Letters, 33: L22307Google Scholar
  95. Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2008. Interfacial Tension Measurement of Ni-S Liquid Using High-Pressure X-Ray Micro-Tomography. High Pressure Research, 28(3): 327–334Google Scholar
  96. Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2009. In Situ Measurement of Interfacial Tension of Fe-S and Fe-P Liquids under High Pressure Using X-Ray Radiography and Tomography Techniques. Physics of the Earth and Planetary Interiors, 174(1–4): 220–226Google Scholar
  97. Thomas, C. W., Asimow, P. D., 2013a. Direct Shock Compression Experiments on Premolten Forsterite and Progress toward a Consistent High-Pressure Equation of State for CaO-MgO-Al2O3-SiO2-FeO Liquids. Journal of Geophysical Research: Solid Earth, 118(11): 2013JB010232Google Scholar
  98. Thomas, C. W., Asimow, P. D., 2013b. Preheated Shock Experiments in the Molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 Ternary: A Test for Linear Mixing of Liquid Volumes at High Pressure and Temperature. Journal of Geophysical Research: Solid Earth, 118(7): 3354–3365Google Scholar
  99. Thorpe, M. F., 1983. Continuous Deformations in Random Networks. Journal of Non-Crystalline Solids, 57(3): 355–370Google Scholar
  100. Tinker, D., Lesher, C. E., Baxter, G. M., et al., 2004. High-Pressure Viscometry of Polymerized Silicate Melts and Limitations of the Eyring Equation. American Mineralogist, 89(11–12): 1701–1708Google Scholar
  101. Tsuji, K., Yaoita, K., Imai, M., et al., 1989. Measurements of X-Ray Diffraction for Liquid Metals under High Pressure. Review of Scientific Instruments, 60(7): 2425–2428Google Scholar
  102. Wang, Y., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 74: 3002–3011Google Scholar
  103. Wang, Y., Rivers, M., Sutton, S., et al., 2009. The Large-Volume High-Pressure Facility at GSECARS: A “Swiss-Army-Knife” Approach to Synchrotron-Based Experimental Studies. Physics of the Earth and Planetary Interiors, 174(1–4): 270–281Google Scholar
  104. Wang, Y., Sakamaki, T., Skinner, L. B., et al., 2014. Atomistic Insight into Viscosity and Density of Silicate Melts under Pressure. Nat. Commun., 5: 3241Google Scholar
  105. Wang, Y., Shen, G., Rivers, M. L., 2002. High Pressure Research Techniques at Third Generation Synchrotron Radiation Sources, In: Mills, D. M., ed., Third-Generation Hard X-Ray Synchrotron Radiation Sources. John Wiley & Sons, New York. 203–236Google Scholar
  106. Wang, Y., Uchida, T., Westferro, F., et al., 2005. High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 40(21): 5763–5766Google Scholar
  107. Yamada, A., Inoue, T., Urakawa, S., et al., 2007. In Situ X-Ray Experiment on the Structure of Hydrous Mg-Silicate Melt under High Pressure and High Temperature. Geophysical Research Letters, 34(10): L10303Google Scholar
  108. Yamada, A., Wang, Y., Inoue, T., et al., 2011. High-Pressure X-Ray Diffraction Studies on the Structure of Liquid Silicate Using a Paris—Edinburgh Type Large Volume Press. Review of Scientific Instruments, 82(1): 15103–05107Google Scholar
  109. Zouboulis, E., Grimsditch, M., Ramdas, A., et al., 1998. Temperature Dependence of the Elastic Moduli of Diamond: A Brillouin-Scattering Study. Physical Review B, 57(5): 2889Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Advanced Radiation SourcesThe University of ChicagoChicagoUSA
  2. 2.HPCAT, Geophysical LaboratoryCarnegie Institution of WashingtonArgonneUSA

Personalised recommendations