Advertisement

Journal of Earth Science

, Volume 25, Issue 3, pp 495–505 | Cite as

Formation of a hydrothermal kaolinite deposit from rhyolitic tuff in Jiangxi, China

  • Ye Yuan
  • Guanghai Shi
  • Mengchu Yang
  • Yinuo Wu
  • Zhaochong Zhang
  • Anjie Huang
  • Jiajing Zhang
Article

Abstract

The Longmen kaolinite deposit is one of the largest hydrothermal clay deposits of Ganxi volcanic basin (northern Wuyi Mountain area, China). The pristine host rocks are rhyolitic crystal-vitric tuff and minor lapilli tuff from the Late Jurassic Ehuling Formation. The ore consists of kaolin-group minerals (kaolinite, dickite), pyrophyllite with minor quartz, sericite, pyrite, etc.. From the host rocks to the transition zones (altered rocks) then to the vein ores, contents of SiO2 and TFe2O3 decrease, whereas Al2O3 and LOI increase, consistent with the contents increase of kaolin minerals and pyrophyllite in the samples. The total REE abundances of the ores are much lower than that of the host and altered rocks, Rb, Nb, Nd, Zr, Ti and Y are significantly depleted. Apparent zoning features of bulk geochemistry and mineral component reflect that the kaolinite deposit occurred at the expense of the host rock by ascending hydrothermal fluids with distinct removal of SiO2, TFe2O3, Na2O, K2O. According to the mineral assemblage, the formation temperature of this deposit falls within the range of 270–350 °C. With regard to the industrial applications, the kaolinized ores are suitable for use in ceramics and gemologic materials crafted for seal stones. Moreover, in mineralogical terms, this deposit is also proved to be an excellent example for studying channeled hydrothermal alterations of rhyolitic tuff.

Key Words

China geochemistry hydrothermal alteration Jiangxi kaolinite pyrophyllite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bailey, S. W., 1980. Structures of Layer Silicates. In: Brindley, G. W., Brown, G., eds., Crystal Structures of Clay Minerals and Their X-Ray Identification. Monograph 5, Mineralogical Society, London. 1–123Google Scholar
  2. Banfield, J. F., Barker, W. W., 1998. Low-Temperature Alteration in Tuffs from Yucca Mountain, Nevada. Clay and Clay Minerals, 46(1): 27–37CrossRefGoogle Scholar
  3. Bottrill, R. S., 1998. A Corundum-Quartz Assemblage in Altered Volcanic Rocks, Bond Range, Tasmania. Mineralogical Magazine, 62(3): 325–332CrossRefGoogle Scholar
  4. Boulvais, P., Vallet, J. M., Esteoule-Choux, J., et al., 2000. Origin of Kaolinization in Brittany (NW France) with Emphasis on Deposits over Granite: Stable Isotopes (O, H) Constraints. Chemical Geology, 168(3): 211–223CrossRefGoogle Scholar
  5. Brindley, G. W., Wardle, R., 1970. Monoclinic and Triclinic Forms of Pyrophyllite and Pyrophyllite Anhydride. American Mineralogist, 55(7-8): 1259–1272Google Scholar
  6. Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks, 8th Edition. Springer-Verlag, Berlin. 415–418, doi:10.1007/978-3-540-74169-5CrossRefGoogle Scholar
  7. Chen, H. N., Wu, Q. H., He, J. R., et al., 1988. Basic Characters of the Mesozoic Volcanogenic Nonmetallic Deposits in Zhejiang-Fujian-Jiangxi Area. Geological Publishing House, Beijing. 79–98 (in Chinese with English Abstract)Google Scholar
  8. Chen, T., Yan, X. J., Lu, W., et al., 2009. Gemmological Study on Chicken-Blood Stone from Changhua. Journal of Gems and Gemmology, 11: 7–19 (in Chinese with English Abstract)Google Scholar
  9. Crovisier, J. L., Honnorez, J., Fritz, B., et al., 1992. Dissolution of Subglacial Volcanic Glasses from Iceland: Laboratory Study and Modelling. Applied Geochemistry, 1(Suppl.): 55–81CrossRefGoogle Scholar
  10. De La Fuente, S., Cuadros, J., Fiore, S., et al., 2000. Electron Microscopy Study of Volcanic Tuff Alteration to Illite-Smectite under Hydrothermal Conditions. Clay and Clay Minerals, 48(3): 339–350CrossRefGoogle Scholar
  11. Ece, Ö. I., Schroeder, A. P., 2007. Clay Mineralogy and Chemistry of Halloysite and Alunite Deposits in the Turplu Area, Balikesir, Turkey. Clay and Clay Minerals, 55(1): 18–35CrossRefGoogle Scholar
  12. Ece, Ö. I., Schroeder, A. P., Smilley, M. J., et al., 2008. Acid-Sulphate Hydrothermal Alteration of Andesitic Tuffs and Genesis of Halloysite and Alunite Deposits in the Biga Peninsula, Turkey. Clay Minerals, 43(2): 281–315CrossRefGoogle Scholar
  13. Erkoyun, H., Kadir, S., 2011. Mineralogy, Micromorphology, Geochemistry and Genesis of a Hydrothermal Kaolinite Deposit and Altered Miocene Host Volcanites in the Hallaçlar Area, Uşak, Western Turkey. Clay Minerals, 46(3): 421–448CrossRefGoogle Scholar
  14. Gao, K., Di, J. R., 2010. Study on Transparency of Balin Stone and Shoushan Stone. Journal of Gems and Gemmology, 12: 26–33 (in Chinese with English Abstract)Google Scholar
  15. García-Romero, E., Vegas, J., Baldonedo, J. L., et al., 2005. Clay Minerals as Alteration Products in Basaltic Volcaniclastic Deposits of La Palma (Canary Islands, Spain). Sedimentary Geology, 174(3–4): 237–253, doi:10.1016/j.sedgeo.2004.12.007CrossRefGoogle Scholar
  16. Gilg, H. A., Hülmeyer, S., Miller, S., et al., 1999. Supergene Origin of the Lastarria Kaolin Deposit, South-Central Chile, and Paleoclimatic Implications. Clay and Clay Minerals, 47(2): 201–211CrossRefGoogle Scholar
  17. Gilg, H. A., Weber, B., Kasbohm, J., et al., 2003. Isotope Geochemistry and Origin of Illite-Smectite and Kaolinite from the Seilitz and Kemmlitź Kaolin Deposits, Saxony, Germany. Clay Minerals, 38(1): 95–112, doi:10.1180/0009855033810081CrossRefGoogle Scholar
  18. Harvey, C. C., Murray, H. H., 1993. The Geology, Mineralogy, and Exploitation of Halloysite Clays of Northland, New Zealand. In: Murray, H. H., Bundy, W. M., Harvey, C. C., eds., Kaolin Genesis and Utilization. Special Publication 1, The Clay Minerals Society, Bloomington. 233–248Google Scholar
  19. Hemley, J. J., 1959. Some Mineralogical Equilibria in the System K2O-Al2O3-SiO2-H2O. American Journal of Science, 257: 241–270CrossRefGoogle Scholar
  20. Hemley, J. J., Jones, W. R., 1964. Chemical Aspects of Hydrothermal Alteration with Emphasis on Hydrogen Metasomatism. Economic Geology, 59(4): 538–569CrossRefGoogle Scholar
  21. Hemley, J. J., Montoya, J. W., Marinenko, J. W., et al., 1980. Equilibria in the System Al2O3-SiO2-H2O and Some General Implications for Alteration/Mineralization Processes. Economic Geology, 75(2): 210–228CrossRefGoogle Scholar
  22. Hinckley, D. N., 1963. Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clay and Clay Minerals, 11(1): 229–235CrossRefGoogle Scholar
  23. Inoue, A., 1995. Formation of Clay Minerals in Hydrothermal Environments. In: Velde, B., ed., Clays and the Environment: Origin and Mineralogy of Clays. Springer-Verlag, Berlin. 268–329Google Scholar
  24. Kadir, S., Erman, H., Erkoyun, H., 2011. Mineralogical and Geochemical Characteristics and Genesis of Hydrothermal Kaolinite Deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey. Clay and Clay Minerals, 59(3): 250–276, doi:10.1346/CCMN.2011.0590304CrossRefGoogle Scholar
  25. Kawano, M., Tomita, K., 1997. Experimental Study of the Formation of Zeolites from Obsidian by Interaction with NaOH and KOH Solutions at 150 and 200 °C. Clay and Clay Minerals, 45(3): 365–377CrossRefGoogle Scholar
  26. LeBas, M. J., LeMaitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750CrossRefGoogle Scholar
  27. Liao, Z. T., Zhou, Z. Y., Teng, Y., 2004. Mineral Composition of “Di” of Changhua Chicken-Blood Stone and Influence on Quality. Journal of Tongji University (Natural Science), 32(7): 897–900 (in Chinese with English Abstract)Google Scholar
  28. Magonthier, M. C., Petit, J. C., Dran, J. C., 1992. Rhyolitic Glasses as Natural Analogues of Nuclear Waste Glasses: Behaviour of an Icelandic Glass upon Natural Aqueous Corrosion. Applied Geochemistry, 1(Suppl): 83–93CrossRefGoogle Scholar
  29. Marumo, K., Nagasawa, K., Kuroda, Y., 1980. Mineralogy and Hydrogen Isotope Geochemistry of Clay Minerals in the Ohnuma Geothermal Area, Northeastern Japan. Earth and Planetary Science Letters, 47(2): 255–262CrossRefGoogle Scholar
  30. Murray, H. H., Harvey, C. C., Smith, J. M., 1977. Mineralogy and Geology of the Maungaparerua Halloysite Deposit in New Zealand. Clay and Clay Minerals, 25(1): 1–5CrossRefGoogle Scholar
  31. Roy, R., Osborn, E., 1954. The System Al2O3-SiO2-H2O. American Mineralogist, 39: 853–885Google Scholar
  32. Sheppard, S. M. F., Gilg, H. A., 1996. Stable Isotope Geochemistry of Clay Minerals. Clay Minerals, 31(1): 1–24CrossRefGoogle Scholar
  33. Shi, G. H., Jiang, N., Wang, Y. W., et al., 2010. Ba Minerals in Clinopyroxene Rocks from the Myanmar Jadeitite Area: Implications for Ba Recycling in Subduction Zones. European Journal of Mineralogy, 22(2): 199–214, doi:10.1127/0935-1221/2010/0022-1998CrossRefGoogle Scholar
  34. Shi, G. H., Zhu, R. X., Jiang, N., et al., 2008a. Geochemistry and Mineralogy of Two Contrasting Cretaceous Lavas: Implications for Lithospheric Mantle Evolution beneath the Northeastern China Craton. International Geology Review, 50(11): 1040–1053, doi:10.2747/0020-6814.50.11.1040CrossRefGoogle Scholar
  35. Shi, G. H., Cui, W. Y., Cao, S. M., et al., 2008b. Ion Microprobe Zircon U-Pb Age and Geochemistry of the Myanmar Jadeitite. Journal of the Geological Society, 165(1): 221–234CrossRefGoogle Scholar
  36. Simeone, R., Dilles, J. H., Padalino, G., et al., 2005. Mineralogical and Stable Isotope Studies of Kaolin Deposits: Shallow Epithermal Systems of Western Sardinia, Italy. Economic Geology, 100(1): 115–130CrossRefGoogle Scholar
  37. Sun, N., Cui, W. Y., Xu, X., 2003. Mineralogical Characteristics of Genesis of Shoushan Stone in Jialiangshan, Fujian Province. Acta Petrologica et Mineralogica, 22(3): 273–278 (in Chinese with English Abstract)Google Scholar
  38. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism In Ocean Basins. Special Publication of Geological Society, London, 42: 313–345Google Scholar
  39. Tang, Y. J., Zhang, H. F., Ying, J. F., 2006. Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime: Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3): 309–327, doi:10.1016/j.chemgeo.2006.03.013CrossRefGoogle Scholar
  40. Tzuzuki, Y., Mizutani, S., 1971. A Study of Rock Alteration Process Based on Kinetics of Hydrothermal Experiment. Contributions to Mineralogy and Petrology, 30: 15–33CrossRefGoogle Scholar
  41. Wada, K., 1987. Minerals Formed and Mineral Formation from Volcanic Ash by Weathering. Chemical Geology, 60(1–4): 17–28CrossRefGoogle Scholar
  42. Wu, X. F., Cui, W. Y., 1999. A Mineralogical and Petrographical Study of Shoushan Stone (Agalmatolite). Acta Petrologica et Mineralogica, 18(2): 186–192 (in Chinese with English Abstract)Google Scholar
  43. Zhang, J. J., Shi, G. H., Tong, G. S., et al., 2009a. Geochemistry and Geochronology of Copper and Ploy Metal-Bearing Volcanic Rocks of the Ehuling Formation in Xujiadun, Zhejiang Province. Acta Geologica Sinica, 83(6): 791–799 (in Chinese with English Abstract)Google Scholar
  44. Zhang, J. J., Wu, M. S., Chen, Z. H., et al., 2009b. Geochronologic Study on the Jingzhuping Molybdenum-Polymetallic Deposit from Shangrao of Jiangxi Province. Rock and Mineral Analysis, 28(3): 228–232 (in Chinese with English Abstract)Google Scholar
  45. Zhang, S. L., Cui, W. Y., 2002. Study on Mineralogy of Balin Chicken-Blood Stone. Journal of Gems and Gemmology, 4(3): 26–30 (in Chinese with English Abstract)Google Scholar
  46. Zhu, X. M., 2003. Study on Mineral Composition and Genesis of the Qingtian Stone from Zhejiang Province. Acta Petrologica et Mineralogica, 22(1): 65–70 (in Chinese with English Abstract)Google Scholar
  47. Zhu, X. M., 2010. Study on Classification and Identification Characteristics of Varieties of Qingtian Stone. Journal of Gems and Gemmology, 12(4): 17–24 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ye Yuan
    • 1
    • 2
  • Guanghai Shi
    • 1
  • Mengchu Yang
    • 1
  • Yinuo Wu
    • 1
  • Zhaochong Zhang
    • 1
  • Anjie Huang
    • 3
  • Jiajing Zhang
    • 2
  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  2. 2.Geological Survey of Jiangxi ProvinceNanchangChina
  3. 3.Northeast Geological department of Jiangxi Geological Exploration BureauShangraoChina

Personalised recommendations