Journal of Earth Science

, Volume 25, Issue 2, pp 407–412 | Cite as

Ontology dynamics in a data life cycle: Challenges and recommendations from a Geoscience Perspective

  • Xiaogang Ma
  • Peter Fox
  • Eric Rozell
  • Patrick West
  • Stephan Zednik


Ontologies are increasingly deployed as a computer-accessible representation of key semantics in various parts of a data life cycle and, thus, ontology dynamics may pose challenges to data management and re-use. By using examples in the field of geosciences, we analyze challenges raised by ontology dynamics, such as heavy reworking of data, semantic heterogeneity among data providers and users, and error propagation in cross-discipline data discovery and re-use. We also make recommendations to address these challenges: (1) communities of practice on ontologies to reduce inconsistency and duplicated efforts; (2) use ontologies in the procedure of data collection and make them accessible to data users; and (3) seek methods to speed up the reworking of data in a Semantic Web context.

Key Words

semantic web knowledge evolution data transformation geoscience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Allen, D., Schuurman, N., Deshpande, A., et al., 2008. Data Integration and Standardization in Cross-Border Hydrogeological Studies: A Novel Approach to Hydrostratigraphic Model Development. Environmental Geology, 53(7): 1441–1453CrossRefGoogle Scholar
  2. Bates, R. L., Jackson, J. A., 1995. Glossary of Geology, 3rd Edition. American Geological Institute, Alexandria, VA. 788Google Scholar
  3. Bell, D., Qi, G., Liu, W., 2007. Approaches to Inconsistency Handling in Description-Logic Based Ontologies. In: Meersman, R., Tari, Z., Herrero, P., eds., On the Move to Meaningful Internet Systems 2007: Otm 2007 Workshops, Pt 2, Proceedings. Springer-Verlag, Berlin. 1303–1311CrossRefGoogle Scholar
  4. British Geological Survey, 2012. British Geological Survey Taxonomy Online. Accessed on July 08, 2012Google Scholar
  5. Brodaric, B., 2004. The Design of GSC FieldLog: Ontology-Based Software for Computer Aided Geological Field Mapping. Computers & Geosciences, 30(1): 5–20CrossRefGoogle Scholar
  6. Brodaric, B., 2012. Characterizing and Representing Inference Histories in Geologic Mapping. International Journal of Geographical Information Science, 26(2): 265–281CrossRefGoogle Scholar
  7. CCOP, CIFEG, 2006. Asian Multilingual Thesaurus of Geosciences. Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP), Bangkok, Thailand and Centre International pour la Formation et les Echanges en Géosciences (CIFEG), Orléans. 563Google Scholar
  8. Cox, S. J., 2011. OWL Representation of the Geologic Timescale Implementing Stratigraphic Best Practice. Proceedings of AGU 2011 Fall Meeting, San Francisco. Abstract IN31B-1440Google Scholar
  9. Cox, S. J., 2012. Vocabularies of Geologic Time Scale. Accessed on September 6, 2012Google Scholar
  10. Cox, S. J. D., Richard, S. M., 2005. A Formal Model for the Geologic Time Scale and Global Stratotype Section and Point, Compatible with Geospatial Information Transfer Standards. Geosphere, 1(3): 119–137CrossRefGoogle Scholar
  11. Flouris, G., D’Aquin, M., Antoniou, G., et al., 2009. Special Issue on Ontology Dynamics. Journal of Logic and Computation, 19(5): 717–719CrossRefGoogle Scholar
  12. Flouris, G., Manakanatas, D., Kondylakis, H., et al., 2008. Ontology Change: Classification and Survey. The Knowledge Engineering Review, 23(2): 117–152CrossRefGoogle Scholar
  13. Geo-Data Informatics Workshop Committee, 2011. NSF GeoData Informatics: Exploring the Life Cycle, Citation and Integration of Geo-Data (Workshop Report). Accessed on July 4, 2012Google Scholar
  14. Gruber, T. R., 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human-Computer Studies, 43(5–6): 907–928CrossRefGoogle Scholar
  15. Guarino, N., 1997. Understanding, Building and Using Ontologies. International Journal of Human-Computer Studies, 46(2–3): 293–310CrossRefGoogle Scholar
  16. Han, L., Finin, T., Parr, C., et al., 2008. RDF123: from Spreadsheets to RDF. In: Sheth, A., Staab, S., Dean, M., et al., eds., The Semantic Web-ISWC 2008, LNCS vol. 5318. Springer-Verlag, Berlin. 451–466CrossRefGoogle Scholar
  17. International Commission on Stratigraphy, 2012. Global Boundary Stratotype Section and Point (GSSP) of the International Commission of Stratigraphy. Accessed on July 31, 2012Google Scholar
  18. Janowicz, K., Hitzler, P., 2012. The Digital Earth as Knowledge Engine. Semantic Web, 3(3): 213–221Google Scholar
  19. Kondylakis, H., Plexousakis, D., 2011. Ontology Evolution in Data Integration: Query Rewriting to the Rescue. Jeusfeld, M., Delcambre, L., Ling, T. W., eds., Conceptual Modeling-ER 2011, LNCS vol., 6998. Springer-Verlag, Berlin. 393–401CrossRefGoogle Scholar
  20. Laxton, J., Serrano, J. J., Tellez-Arenas, A., 2010. Geological Applications Using Geospatial Standards-An Example from OneGeology-Europe and GeoSciML. International Journal of Digital Earth, 3(Supp1.): 31–49CrossRefGoogle Scholar
  21. Ma, X., Asch, K., Laxton, J. L., et al., 2011a. Data Exchange Facilitated. Nature Geoscience, 4(12): 814CrossRefGoogle Scholar
  22. Ma, X., Carranza, E. J. M., Wu, C., et al., 2011b. A SKOSBased Multilingual Thesaurus of Geological Time Scale for Interoperability of Online Geological Maps. Computers & Geosciences, 37(10): 1602–1615CrossRefGoogle Scholar
  23. Ma, X., Fox, P., 2013. Recent Progress on Geologic Time Ontologies and Considerations for Future Works. Earth Science Informatics, 6(1): 31–46 doi:10.1007/s12145-013-0110-xCrossRefGoogle Scholar
  24. Ma, X., Wu, C., Carranza, E. J. M., et al., 2010. Development of a Controlled Vocabulary for Semantic Interoperability of Mineral Exploration Geodata for Mining Projects. Computers & Geosciences, 36(12): 1512–1522CrossRefGoogle Scholar
  25. Mascarelli, A. L., 2009. Quaternary Geologists Win Timescale Vote. Nature, 459: 624CrossRefGoogle Scholar
  26. McGuinness, D. L., 2003. Ontologies Come of Age. Fensel, D., Hendler, J., Lieberman, H., et al., eds., Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge. 171–196Google Scholar
  27. NADM Steering Committee, 2004. NADM Conceptual Model 1.0-A conceptual Model For Geologic Map Information: U.S. Geological Survey Open-File Report 2004-1334, North American Geologic Map Data Model (NADM) Steering Committee, Reston. 58Google Scholar
  28. Noy, N. F., Musen, M. A., 2004. Ontology Versioning in an Ontology Management Framework. IEEE Intelligent Systems, 19(4): 6–13CrossRefGoogle Scholar
  29. Obrst, L., 2003. Ontologies for Semantically Interoperable Systems. Proceedings of the Twelfth International Conference on Information and Knowledge Management, New Orleans. 366–369Google Scholar
  30. Raskin, R. G., Pan, M. J., 2005. Knowledge Representation in the Semantic Web for Earth and Environmental Terminology (SWEET). Computers & Geosciences, 31(9): 1119–1125CrossRefGoogle Scholar
  31. Sen, M., Duffy, T., 2005. GeoSciML: Development of a Generic GeoScience Markup Language. Computers & Geosciences, 31(9): 1095–1103CrossRefGoogle Scholar
  32. Soller, D., Berg, T., 2005. The U.S. National Geologic Map Database Project: Overview & Progress. Ostaficzuk, S. R., ed., The Current Role of Geological Mapping in Geosciences. Springer, Dordrecht. 245–277CrossRefGoogle Scholar
  33. Spencer, S., 2012. What is DDI? Accessed on July 4, 2012Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiaogang Ma
    • 1
  • Peter Fox
    • 1
  • Eric Rozell
    • 1
  • Patrick West
    • 1
  • Stephan Zednik
    • 1
  1. 1.Tetherless World Constellation, School of ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations