Journal of Earth Science

, Volume 25, Issue 1, pp 126–139 | Cite as

Linear stability analysis on the influences of the spatial variations in thermal conductivity and expansivity on the flow patterns of thermal convection with strongly temperature-dependent viscosity

  • Arata Miyauchi
  • Masanori Kameyama
  • Hiroki Ichikawa


A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and conductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the “stagnant-lid” (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizontal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which successfully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.

Key Words

mantle convection stagnant-lid temperature-dependent viscosity pressure-dependent thermal conductivity pressure-dependent thermal expansivity linear stability analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bull, A. L., McNamara, A. K., Ritsema, J., 2009. Synthetic Tomography of Plume Clusters and Thermochemical Piles. Earth and Planetary Science Letters, 278(3–4): 152–162CrossRefGoogle Scholar
  2. Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophysical Research Letters, 19(19): 1983–1986CrossRefGoogle Scholar
  3. Davaille, A., Girard, F., Bars, M. L., 2002. How to Anchor Hotspots in a Convecting Mantle? Earth and Planetary Science Letters, 203(2): 621–634CrossRefGoogle Scholar
  4. de Koker, N., 2010. Thermal Conductivity of Mg Opericlase at High Pressure: Implications for the D” Region. Earth and Planetary Science Letters, 292(3–4): 392–398CrossRefGoogle Scholar
  5. de Koker, N., 2009. Thermal Conductivity of Mg Opericlase from Equilibrium First Principles Molecular Dynamics. Physical Review Letters, 103(12): 125902CrossRefGoogle Scholar
  6. Dubuffet, F., Yuen, D. A., Rabinowicz, M., 1999. Effects of a Realistic Mantle Thermal Conductivity on the Patterns of 3-D Convection. Earth and Planetary Science Letters, 171(3): 401–409CrossRefGoogle Scholar
  7. Duffy, T. S., Ahrens, T. J., 1993. Thermal Expansion of Mantle and Core Materials at very High Pressures. Geophysical Research Letters, 20(11): 1103–1106CrossRefGoogle Scholar
  8. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356CrossRefGoogle Scholar
  9. Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049–1056CrossRefGoogle Scholar
  10. Ghias, S. R., Jarvis, G. T., 2008. Mantle Convection Models with Temperature- and Depth-Dependent Thermal Expansivity. Journal of Geophysical Research, 113(B8): B08408CrossRefGoogle Scholar
  11. Goncharov, A. F., Beck, P., Struzhkin, V. V., et al., 2009. Thermal Conductivity of Lower-Mantle Minerals. Physics of the Earth and Planetary Interiors, 174(1–4): 24–32CrossRefGoogle Scholar
  12. Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth’s Lower Mantle. Physics of the Earth and Planetary Interiors, 180(3–4): 148–153CrossRefGoogle Scholar
  13. Gonnermann, H. M., Jellinek, A. M., Richards, M. A., et al., 2004. Modulation of Mantle Plumes and Heat Flow at the Core Mantle Boundary by Plate-Scale Flow: Results from Laboratory Experiments. Earth and Planetary Science Letters, 226(1): 53–67CrossRefGoogle Scholar
  14. Hansen, U., Yuen, D. A., 1993. High Rayleigh Number Regime of Temperature-Dependent Viscosity Convection and the Earth’s Early Thermal History. Geophysical Research Letters, 20(20): 2191–2194CrossRefGoogle Scholar
  15. Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Physics of the Earth and Planetary Interiors, 77(3–4): 205–223CrossRefGoogle Scholar
  16. Hofmeister, A. M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283(5408): 1699–1706CrossRefGoogle Scholar
  17. Jellinek, A. M., Lenardic, A., Manga, M., 2002. The Influence of Interior Mantle Temperature on the Structure of Plumes: Heads for Venus, Tails for the Earth. Geophysical Research Letters, 29(11): 1532CrossRefGoogle Scholar
  18. Kameyama, M., Ichikawa, H., Miyauchi, A., 2013. A Linear Stability Analysis on the Onset of Thermal Convection of a Fluid with Strongly Temperature-Dependent Viscosity in a Spherical Shell. Theoretical and Computational Fluid Dynamics, 27(1–2): 21–40CrossRefGoogle Scholar
  19. Kameyama, M., Ogawa, M., 2000. Transitions in Thermal Convection with Strongly Temperature-Dependent Viscosity in a Wide Box. Earth and Planetary Science Letters, 180(3): 355–367CrossRefGoogle Scholar
  20. Karato, S. I., Karki, B. B., 2001. Origin of Lateral Variation of Seismic Wave Velocities and Density in the Deep Mantle. Journal of Geophysical Research, 106(R10): 21771–21783CrossRefGoogle Scholar
  21. Katsura, T., Yokoshi, S., Song, M. S., et al., 2004. Thermal Expansion of Mg2SiO4 Ringwoodite at High Pressures. Journal of Geophysical Research, 109(B12): B12209CrossRefGoogle Scholar
  22. Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. PVT Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophysical Research Letters, 36(1): L01305CrossRefGoogle Scholar
  23. Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proceedings of the National Academy of Sciences, 106(52): 22119–22123CrossRefGoogle Scholar
  24. Kono, Y., Irifune, T., Higo, Y., et al., 2010. PVT Relation of MgO Derived by Simultaneous Elastic Wave Velocity and In Situ X-Ray Measurements: A New Pressure Scale for the Mantle Transition Region. Physics of the Earth and Planetary Interiors, 183(12): 196–211, doi:10.1016/j.pepi.2010.03.010CrossRefGoogle Scholar
  25. Konopliv, A. S., Banerdt, W. B., Sjogren, W. L., 1999. Venus Gravity: 180th Degree and Order Model. Icarus, 139(1): 3–18CrossRefGoogle Scholar
  26. Lenardic, A., Richards, M. A., Busse, F. H., 2006. Depth-Dependent Rheology and the Horizontal Length Scale of Mantle Convection. Journal of Geophysical Research, 111(B7): B07404CrossRefGoogle Scholar
  27. Masters, G., Laske, G., Gilbert, F., 2000. Matrix Autoregressive Analysis of Free-Oscillation Coupling and Splitting. Geophysical Journal International, 143(2): 478–489CrossRefGoogle Scholar
  28. McNamara, A. K., Zhong, S. J., 2005. Degree-One Mantle Convection: Dependence on Internal Heating and Temperature-Dependent Rheology. Geophysical Research Letters, 32(7062): L01301Google Scholar
  29. Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations. Physics of Fluids, 7(9): 2154CrossRefGoogle Scholar
  30. Mosenfelder, J. L., Asimow, P. D., Frost, D. J., et al., 2009. The MgSiO3 System at High Pressure: Thermodynamic Properties of Perovskite, Postperovskite, and Melt from Global Inversion of Shock and Static Compression Data. Journal of Geophysical Research, 114(B1): B01203CrossRefGoogle Scholar
  31. Ogawa, M., Schubert, G., Zebib, A., 1991. Numerical Simulations of Three-Dimensional Thermal Convection in a Fluid with Strongly Temperature-Dependent Viscosity. Journal of Fluid Mechanics, 233(1): 299–328CrossRefGoogle Scholar
  32. Roberts, J. H., Zhong, S. J., 2006. Degree-1 Convection in the Martian Mantle and the Origin of the Hemispheric Dichotomy. Journal of Geophysical Research, 111(E6): E06013CrossRefGoogle Scholar
  33. Robin, C. M. I., Jellinek, A. M., Thayalan, V., et al., 2007. Transient Mantle Convection on Venus: The Paradoxical Coexistence of Highlands and Coronae in the BAT Region. Earth and Planetary Science Letters, 256(1): 100–119CrossRefGoogle Scholar
  34. Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univercity Press, CambridgeCrossRefGoogle Scholar
  35. Solomatov, V. S., 1995. Scaling of Temperature- and Stress-Dependent Viscosity Convection. Physics of Fluids, 7(2): 266–275CrossRefGoogle Scholar
  36. Solomatov, V. S., Moresi, L. N., 1996. Stagnant Lid Convection on Venus. Journal of Geophysical Research, 101(2): 4737–4753CrossRefGoogle Scholar
  37. Solomatov, V. S., Moresi, L. N., 1997. Three Regimes of Mantle Convection with Non-Newtonian Viscosity and Stagnant Lid Convection on the Terrestrial Planets. Geophysical Research Letters, 24(15): 1907–1910CrossRefGoogle Scholar
  38. Šrámek, O., Zhong, S. J., 2010. Long-Wavelength Stagnant Lid Convection with Hemispheric Variation in Lithospheric Thickness: Link between Martian Crustal Dichotomy and Tharsis? Journal of Geophysical Research, 115(E9): E09010Google Scholar
  39. Stacey, F. D., Davis, P. M., 2008. Physics of the Earth, 4th ed.. Wiley, New YorkCrossRefGoogle Scholar
  40. Stengel, K. C., Oliver, D. S., Booker, J. R., 1982. Onset of Convection in a Variable-Viscosity Fluid. Journal of Fluid Mechanics, 120(1): 411–431CrossRefGoogle Scholar
  41. Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 1. Pseudoplastic Yielding. Geochemistry Geophysics Geosystems, 1(8): 1021Google Scholar
  42. Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 2. Strain Weakening and Asthenosphere. Geochemistry Geophysics Geosystems, 1(8): 1026Google Scholar
  43. Tackley, P. J., Xie, S., Nakagawa, T., et al., 2005. Numerical and Laboratory Studies of Mantle Convection: Philosophy, Accomplishments, and Thermochemical Structure and Evolution. Geophysical Monograph, 160: 83–99Google Scholar
  44. Tang, X., Dong, J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth’s Interior. Proceedings of the National Academy of Sciences, 107(10): 4539–4543CrossRefGoogle Scholar
  45. Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth and Planetary Science Letters, 298(1–2): 229–243CrossRefGoogle Scholar
  46. Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge Univercity Press, CambridgeCrossRefGoogle Scholar
  47. van den Berg, A. P., Rainey, E. S. G., Yuen, D. A., 2005. The Combined Influences of Variable Thermal Conductivity, Temperature- and Pressure-Dependent Viscosity and Core-Mantle Coupling on Thermal Evolution. Physics of the Earth and Planetary Interiors, 149(3): 259–278CrossRefGoogle Scholar
  48. van den Berg, A. P., Yuen, D. A., Allwardt, J. R., 2002. Non-Linear Effects from Variable Thermal Conductivity and Mantle Internal Heating: Implications for Massive Melting and Secular Cooling of the Mantle. Physics of the Earth and Planetary Interiors, 129(3–4): 359–375CrossRefGoogle Scholar
  49. Yoshida, M., 2008. Mantle Convection with Longest-Wavelength Thermal Heterogeneity in a 3-D Spherical Model: Degree One or Two? Geophysical Research Letters, 35(23): L23302CrossRefGoogle Scholar
  50. Yoshida, M., Kageyama, A., 2006. Low-Degree Mantle Convection with Strongly Temperature- and Depth-Dependent Viscosity in a Three-Dimensional Spherical Shell. Journal of Geophysical Research, 111(B3): B03412CrossRefGoogle Scholar
  51. Zhao, D., 2004. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics. Physics of the Earth and Planetary Interiors, 146(1–2): 3–34CrossRefGoogle Scholar
  52. Zhong, S. J., Zuber, M. T., 2001. Degree-1 Mantle Convection and the Crustal Dichotomy on Mars. Earth and Planetary Science Letters, 189(1–2): 75–84CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arata Miyauchi
    • 1
  • Masanori Kameyama
    • 1
  • Hiroki Ichikawa
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyama, EhimeJapan

Personalised recommendations