Advertisement

Journal of Earth Science

, Volume 22, Issue 6, pp 704–717 | Cite as

Organic carbon isotope records of paleoclimatic evolution since the last glacial period in the Tangjia region, Tibet

  • Lingkang Chen (陈陵康)Email author
  • Xulong Lai (赖旭龙)
  • Yinbing Zhao (赵银兵)
  • Haixia Chen (陈海霞)
  • Zhongyun Ni (倪忠云)
Article

Abstract

We firstly present the description of the river terrace at Tangjia (唐家) Village in Lhasa, Tibet, collect soil samples, and select the climate indicators including δ 13C, total organic carbon (TOC), and the Rb/Sr ratios to study its paleoclimate in this area. Ancient climate changes have been reconstructed since the last glacier period. The results show that the δ 13C, TOC, and the Rb/Sr ratio are good indicators of ancient climate fluctuations. Paleoclimatic evolution in the Lhasa Tangjia region could be divided into seven stages. In stages II (11.7–10.2 kaB.P.) and IV (8.1–6.1 kaB.P.), δ 13C was positive and TOC was high, indicating that the climates in these two stages were relatively warm and humid. In stages III (10.2–8.1 kaB.P.) and V (6.1–4.9 kaB.P.), δ 13C showed cyclical fluctuations, but TOC exhibited less change, suggesting that the climates displayed variation on the millennial scale. Moreover, the climatic variations were on a century-long scale during the later Middle Holocene. Compared with δ 13C from Sumxi Co (松木希错) and δ 18O from the Guliya (古里雅) ice core, the study confirmed that four cold events occurred during the Holocene (9.4, 8.2, 5.4, and 4.2 kaB.P.). The climate indicators were limited to the river terrace based on the geological characteristics of the Lhasa region. Unexpectedly, δ 13C was a sensitive indicator of climate change.

Key words

organic carbon isotopes TOC paleoclimate Lhasa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Alley, R. B., Mayewski, P. A., Sowers, T., et al., 1997. Holocene Climatic Instability: A Prominent, Widespread Event 8 200 Years Ago. Geology, 25: 483–486CrossRefGoogle Scholar
  2. An, Z. S., Porter, S. C., Zhou, W. J., et al., 1993. Episode of Serengened Summer Monsoon Climate of Younger Dryas Age on the Loess Plateau of Central China. Quaternary Research, 39: 45–54CrossRefGoogle Scholar
  3. Andersen, K. K., Azuma, N., Barnola, J. M., et al., 2004. High Resolution Record of Northern Hemisphere Climate Extending into the Last Interglacial Period. Nature, 431(7005): 147–151, doi:10.1038/nature02805CrossRefGoogle Scholar
  4. Black, C. C., Osmond, C. B., 2003. Crassulacean Acid Metabolism Photosynthesis: ‘Working the Night Shift’. Photosynthesis Research, 76(1–3): 329–341CrossRefGoogle Scholar
  5. Bohnert, H. J., Jensen, R. G., 1996. Metabolic Engineering for Increased Salt to Lerance. Australian Journal of Plant Physiology, 23: 661–667CrossRefGoogle Scholar
  6. Bond, G., Showers, W., Cheseby, M., et al., 1997. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science, 278(5341): 1257–1266CrossRefGoogle Scholar
  7. Cerling, T. E., Quade, J., Wang, Y., et al., 1989. Carbon Isotopes in Soils and Palaeosols as Ecology and Palaeoecology Indicators. Nature, 341: 138–139CrossRefGoogle Scholar
  8. Chen, J., Ji, J. F., Qiu, G., 1998. Geochemical Studies on the Intensity of Chemical Weathering in Luochuan Loess-Paleosol Sequence, China. Science in China (Series D), 41(3): 235–241 (in Chinese)CrossRefGoogle Scholar
  9. Chen, L. K., Guo, J. Q., Gu, Y. S., 2008. Characteristics of Phytolith Assemblages from Sediments of Modern River Floodplain and First Terraces in Lhasa River, Tibet. Acta Sedimentologica Sinica, 26(3): 479–486 (in Chinese with English Abstract)Google Scholar
  10. Chen, S. P., Bai, Y. F., Han, X. G., 2002. Applications of Stable Carbon Isotope Techniques to Ecological Research. Acta Phytoecologica Sinica, 26(5): 549–560 (in Chinese with English Abstract)Google Scholar
  11. Chen, S. Y., Wang, S. M., Jin, Z. D., et al., 2004. Lake Sedimentary Record of Environmental Evolution in the Last 2.8 Ma from the Co Ngoin Basin, Central Qinghai-Xizang Plateau. Geochimica, 33(2): 159–164 (in Chinese with English Abstract)Google Scholar
  12. Choi, W. J., Ro, H. M., Chang, S. X., 2005. Carbon Isotope Composition of Phragm Ites Australis in a Constructed Saline Wetland. Aquatic Botany, 82(1): 27–38CrossRefGoogle Scholar
  13. Cushman, J. C., Borland, A. M., 2002. Induction of Crassulacean Acid Metabolism by Water Limitation. Plant, Cell and Environment, 25(2): 295–310CrossRefGoogle Scholar
  14. Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 364(15): 218–220, doi:10.1038/364218a0CrossRefGoogle Scholar
  15. Dasch, E. J., 1969. Strontium Isotopes in Weathering Profiles, Deep Sea Sediments and Sedimentary Rocks. Geochim. Cosmochim. Acta, 33(2): 1521–1552CrossRefGoogle Scholar
  16. Earnshaw, M. J., Winter, K., Ziegler, H., et al., 1987. Altitudinal Changes in the Incidence of Rassulacean Acid Metabolism in Vascular Epiphytes and Related Life Forms in Papua New Guinea. Oecologia, 73(4): 566–572CrossRefGoogle Scholar
  17. Gasse, F., Arnold, M., Fontes, J. C., et al., 1991. A 13 000-year Climate Record from Western Tibet. Nature, 353(6346): 742–745, doi:10.1038/353742a0CrossRefGoogle Scholar
  18. Gasse, F., Fontes, J. C., van Campo, E., et al., 1996. Holocene Environmental Changes in Bangong Co Basin (Western Tibet). Part 4: Discussion and Conclusion. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1–2): 79–92CrossRefGoogle Scholar
  19. Grootes, P. M., Stuiver, M., 1997. Oxygen 18/16 Variability in Greenland Snow and Ice with 10−3–10−5 Year Time Resolution. Journal of Geophysical Research, 102(C12): 26455–26470CrossRefGoogle Scholar
  20. Gu, Z. Y., Liu, J. Q., Yuan, B. Y., et al., 1993. Monsoon Variations of the Qinghai-Tibetan Plateau during the Last 12 000 Years-Geochemical Evidence from the Sediments of Siling Co. Chinese Science Bulletin, 38(1): 577–581 (in Chinese)Google Scholar
  21. Guillet, B., Faivre, P., Mariotti, A., et al., 1988. 14C Dates and 13C/14C Ratios of Soil Organic Matter as a Means of Studying the Past Vegetation in Intertropical Regions: Examples from Colomibia (South America). Palaeogeography, Palaeoclimatology, Palaeoecology, 65: 51–58CrossRefGoogle Scholar
  22. Haag Kerwer, A., Franco, A. C., Luettge, U., 1992. The Effect of Temperature and Light on Gas Exchange and Acid Accumulation in the C3-CAM Plant Clusiaminor L. Journal of Experimental Botany, 43(248): 345–352CrossRefGoogle Scholar
  23. Jin, Z. D., Cao, J. J., Wu, J. L., et al., 2005. A Rb/Sr Record of Catchment Weathering Response to Holocene Climate Change in Inner Mongolia. Earth Surface Processes and Landforms, 10: 1243–1249 (in Chinese with English Abstract)Google Scholar
  24. Kelly, E. F., Blecker, S. W., Yonker, C. M., et al., 1998. Stable Isotope Composition of Soil Organic Matter and Phytoliths as Paleoenvironmental Indicators. Geoderma, 82(1–3): 59–81CrossRefGoogle Scholar
  25. Li, J. G., 2004. Discovery and Preliminany Study on Palynofossils from the Cenozoic Qinwu Formation of Xizang (Tibet). Acta Micropalaeontologica Sinica, 6(2): 216–221 (in Chinese with English Abstract)Google Scholar
  26. Li, Y. F., Zhang, Q. S., Li, B. Y., 1994. Ostracod Fauna and Environmental Changes during the Past 17 000 Years in the Western Tibet. Acta Geographica Sinica, 49(1): 46–54 (in Chinese with English Abstract)Google Scholar
  27. Lissner, J., Schierup, H. H., Comin, F. A., et al., 1999. Effect of Climate on the Salt Tolerance of Two Phragmites Australis Populations. Part II: Diurnal CO2 Exchange and Transp Iration. Aquat. Bot, 64(3–4): 335–350CrossRefGoogle Scholar
  28. Lister, G. S., Kelts, K., Zao, C. K., et al., 1991. Lake Qinghai, China: Closed Basin Lake Levels and the Oxygen Isotope Record for Ostracoda since the Latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 84(1–4): 141–162CrossRefGoogle Scholar
  29. Liu, X. H., Qin, D. H., Shao, X. M., et al., 2003. The Ring of δ 13C and Its Climate Significance from Himalayan Abiesin in Tibet. Chinese Science Bulletin, 45(11): 1209–1213 (in Chinese)Google Scholar
  30. Liu, X. Q., Wang, S. M., Shen, J., et al., 2003. Effect and Variations on the Organic Carbon-Isotope at Sedimentary from Qinghai Lake in the Past 16 ka. Progress in Natural Science, 30: 619–627 (in Chinese with English Abstract)Google Scholar
  31. Lü, H. Y., Gu, Z. Y., Wu, N. Q., et al., 2001. Effect of Altitude on the Organic Carbon-Isotope Composition of Modern Surface Soils from Qinghai-Xiang Plateau. Quaternary Sciences, 21(5): 399–405 (in Chinese with English Abstract)Google Scholar
  32. Mangerud, J., Andersen, S. T., Berglund, B. E., et al., 1974. Quaternary Stratigraphy of Norden, a Proposal for Terminology and Classification. Boreas, 3: 109–128CrossRefGoogle Scholar
  33. Manuel, N., Cornic, G., Aubert, S., et al., 1999. Protection against Photo Inhibition in the Alpine Plant Geummontanum. Oecologia, 119: 149–158CrossRefGoogle Scholar
  34. Mischke, S., Zhang, C. J., 2010. Holocene Cold Events on the Tibetan Plateau. Global and Planetary Change, 72: 155–163CrossRefGoogle Scholar
  35. Ning, Y. F., Liu, W. G., An, Z. S., et al., 2008. A 130-ka Reconstruction of Precipitation on the Chinese Loess Plateau from Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 270: 59–63CrossRefGoogle Scholar
  36. Philip, A. M., Shoji, H., 1993. An Organic Carbon Isotopic of Glacial-Postglacial Change in Atmospheric pCO2 in the Sediments of Lake Biwa, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 105(3–4): 171–178Google Scholar
  37. Schidlowski, M., 2001. Carbon Isotopes as Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept. Precambrian Research, 106: 117–134CrossRefGoogle Scholar
  38. Smith, B. N., Epstein, S., 1971. Two Categories of 13C/12C Ratios for Higher Plants. Plant Physiology, 47: 380–384CrossRefGoogle Scholar
  39. Stuiver, M., 1975. Climate versus Change in 13C Content of the Organic Component of Lake Sediments during the Late Quaternary. Quaternary Research, 5(2): 251–262CrossRefGoogle Scholar
  40. Stuiver, M., Grootes, P. M., Braziunas, T. F., 1995. The GISP2 δ 18O Climate Record of the Past 16 500 Years and the Role of the Sun, Ocean, and Volcanoes. Quaternary Research, 44: 341–354CrossRefGoogle Scholar
  41. Sun, X. J., Du, N. Q., Chen, Y. S., et al., 1993. Pollen Analysis on Sedimentary of Se Ling Co Lake, Tibet. Acta Vegetation Sinica, 35(12): 943–950 (in Chinese with English Abstract)Google Scholar
  42. Tang, L. Y., Shen, C. M., Liao, G. B., et al., 2004. The Climate Change since the Last Glacial Maximum in Southeast Tibet-Pollen Records from Southeast Tibet. Science in China (Series D), 34(5): 436–442 (in Chinese)Google Scholar
  43. Thompson, L. G., Yao, T. D., Davis, M. E., et al., 1997. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science, 276(5320): 1821–1825, doi: 10.1126/science.276.5320.1821CrossRefGoogle Scholar
  44. Wang, J. B., Zhu, L. P., 2007. The Response of Organic Matter δ 13C to Cold/Warm Fluctuation of Chen Co Lake Sediment, Southern Tibet. Marine Geology & Quaternary Geology, 27(2): 113–121 (in Chinese with English Abstract)Google Scholar
  45. Wang, L. Q., Yi, C. L., Schütt, B., et al., 2009. Genetic Characteristics and Environmental Implications of Sedimentary Deposits of Lake Nam Co in Tibetan Plateau. Acta Sedimentologica Sinica, 27(3): 503–509 (in Chinese with English Abstract)Google Scholar
  46. Wang, S. B., Ge, Q. S., Zheng, J. Y., 2006. Climate and Its Effects around 2 kaBP in China. Marine Geology & Quaternary Geology, 26(2): 123–131 (in Chinese with English Abstract)Google Scholar
  47. Wang, S. W., Xie, Z. H., 2002. Climate Variability at Millennial Time Scales. Earth Science Frontiers, 9(1): 143–153 (in Chinese with English Abstract)Google Scholar
  48. Winter, K., Ziegler, H., 1992. Induction of Crassulacean Acid Metabolism in Mesembryanthem Umcrystallinum Increases Reproductive Success under Conditions of Drought and Salinity Stress. Oecologia, 92(4): 475–479, doi:10.1007/BF00317838CrossRefGoogle Scholar
  49. Wu, X. D., 1990. Application of Tree Ring Analysis to the Study on Environment Variation. Quaternary Sciences, 2: 188–196 (in Chinese with English Abstract)Google Scholar
  50. Wu, Y. H., Lücke, A., Wünnemann, B., et al., 2007. Holocene Climate Change in the Central Tibetan Plateau Inferred by Lacustrine Sediment Geochemical Records. Science in China (Series D), 37(9): 1185–1191. doi:10.1007/s11430-007-0113-x (in Chinese)Google Scholar
  51. Wu, Y. H., Wang, S. M., Hou, X. H., et al., 2006. Chronology Study on Lake Sediments of Holocene at Cuo E in the Central Tibetan Plateau. Science in China (Series D), 36(8): 713–722 (in Chinese)Google Scholar
  52. Wu, Z. H., Wu, Z. H., Ye, P. S., et al., 2006. Late Cenozoic Environmental Evolution of the Qinghai-Tibet Plateau as Indicated by the Evolution of Sporopollen Assemblages. Geology in China, 33(5): 973–974 (in Chinese with English Abstract)Google Scholar
  53. Wu, Z. H., Zhao, X. T., Wu, Z. H., et al., 2003. Paleovegetation, Paleoclimatic Lake-Level Change since the Last Glacial Maximum in Nam Co, Tibet. Geological Bulletin of China, 22(11): 928–934 (in Chinese with English Abstract)Google Scholar
  54. Wu, Z. H., Zhao, X. T., Wu, Z. H., et al., 2004. Paleovegetation, Paleoclimatic Lake-Level Change since 120 ka BP in Nam Co, Central Xizang. Acta Geologica Sinica, 78(2): 242–252 (in Chinese with English Abstract)Google Scholar
  55. Wynn, J. G., 2007. Carbon Isotope Fractionation during Decomposition of Organic Matter in Soils and Paleosols: Implications for Paleoecological Interpretations of Paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 437–448CrossRefGoogle Scholar
  56. Xie, Y. W., Peng, X. J., Duan, G. X., et al., 2009. Report on l: 250 000 Regional Geological Survey of Lhasa Mapsheet. Tibet Geological Survey, Lhasa. 1–365 (in Chinese)Google Scholar
  57. Xu, J. H., 1998. Sun, Climate, Hunger, and Mass Migration. Science in China (Series D), 28(4): 366–384 (in Chinese)Google Scholar
  58. Yao, T. D., Duan, K. Q., Tian, L. D., et al., 2000. Accumulation on Dasuopu Ice-Core Record and Variations in Precipitation from Indian Summer Monsoon in the Past 400 a. Science in China (Series D), 30: 619–627 (in Chinese)Google Scholar
  59. Yao, T. D., Qin, D. H., Tian, L. D., et al., 2006. Variations in Temperature and Precipitation in the Past 2 000 a on the Xizang (Tibet) Plateau-Guliya Ice Core Record. Science in China (Series D), 26(4): 348–353 (in Chinese)Google Scholar
  60. Yu, J. X., Liu, A. M., Huang, Y. Z., et al., 2004. Pollen-based Reconstructions of Late Pleistocene and Holocene Vegetation and Climatic Changes of Yang Lake Area, Tibet. Chinese Bulletin of Botany, 21(1): 91–100 (in Chinese with English Abstract)Google Scholar
  61. Zhang, Q., Han, Y. X., Song, L. C., 2005. The Summarize of Development of Global Climate Change and Its Effect Factors. Advances in Earth Science, 20(9): 990–998 (in Chinese with English Abstract)Google Scholar
  62. Zhao, X. T., Zhu, D. G., Wu, Z. H., et al., 2002. The Development of Nam Co Lake in Tibet since Late Pleistocene. Acta Geoscientia Sinica, 23(4): 329–334 (in Chinese with English Abstract)Google Scholar
  63. Zhao, X. T., Zhu, D. G., Yan, F. H., et al., 2003. Climatic Change and Lake-Level Variation of Namu Co, Xizang since the Last Interglacial Stage. Quaternary Science, 23(1): 41–45 (in Chinese with English Abstract)Google Scholar
  64. Zheng, M. P., Yuan, H. R., Zhao, X. T., et al., 2006. The Quaternary Pan-Lake (over Flow) Period and Paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 80(2): 169–180 (in Chinese with English Abstract)Google Scholar
  65. Zhou, J. L., Wu, Y., Zhang, J., et al., 2006. Carbon and Nitrogen Composition and Stable Isotope as Potential Indicators of Source and Fate of Organic Matter in the Salt Marsh of the Changjiang Estuary, China. Chemosphere, 65: 310–317 (in Chinese with English Abstract)CrossRefGoogle Scholar
  66. Zhou, W. J., An, Z. S., Porter, S. C., et al., 1997. Correlation of Climatic Events between East Asia and Norwegian Sea during Last Deglaciation. Science in China (Series D), 40(5): 496–510 (in Chinese)CrossRefGoogle Scholar
  67. Zhou, W. J., Lu, X. F., Wu, Z. K., et al., 2002. Peat Record Reflecting Holocene Climatic Change in the Zoigê Plateau and AMS Radiocarbon Dating. Chinese Science Bulletin, 47(1): 66–70CrossRefGoogle Scholar
  68. Zhu, L. P., Zhen, X. L., Wang, J. B., et al., 2009. A 30 000-Year Record of Environmental Changes Inferred from Lake Chen Co, Southern Tibet. Journal of Paleolimnology, 42: 343–358, doi:10.1007/s10933-008-9280-9CrossRefGoogle Scholar
  69. Zotz, G., Winter, K., 1993. Short Term Regulation of Crassulacean Acid Metabolism Activity in a Tropical Hemiepiphyte, Clusia Uvitana. Plant Physiology, 102(3): 835–841Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lingkang Chen (陈陵康)
    • 1
    • 2
    Email author
  • Xulong Lai (赖旭龙)
    • 1
  • Yinbing Zhao (赵银兵)
    • 3
  • Haixia Chen (陈海霞)
    • 2
  • Zhongyun Ni (倪忠云)
    • 3
  1. 1.Faculty of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Faculty of Resource and Environmental EngineeringJiangxi University of Science and TecchnologyGanzhouChina
  3. 3.College of Tourism and Urban-Rural PlanningChengdu University of TechnologyChengduChina

Personalised recommendations