Journal of Earth Science

, Volume 22, Issue 6, pp 688–703 | Cite as

Geochemistry of Middle Triassic radiolarian cherts from northern Thailand: Implication for depositional environment

  • Hathaithip Thassanapak
  • Mongkol Udchachon
  • Chongpan Chonglakmani
  • Qinglai Feng (冯庆来)


Geochemical analysis reveals that Middle Triassic radiolarian cherts from northern Thailand, including Chiang Dao, Lamphun and Den Chai, are of biogenic origin. These cherts present slightly high SiO2 content which was possibly modified by diagenetic alteration and migration processes as indicated by negative correlation between SiO2 and most of the other major elements. The relatively high content of Cr, Zr, Hf, Rb and Th and high positive correlation of these elements with Al and Ti from the majority of cherts suggest a close relation to terrigenous component. The Ce anomaly (Ce/Ce*) with geometric means ranging from 0.85 to 0.93 is compatible with that of continental margin composition (0.67–1.52) from Murray et al. (1990) which is also consistent with low Eu anomalies (Eu/Eu*, 0.91–0.94). Moreover, the slightly low ratios of La and Ce NASC normalized (Lan/Cen, 0.91–0.94) and the low LREE and HREE ratios in most of our samples (Lan/Ybn, 0.62–0.85) are in agreement with the continental margin. The result from Lan/Cen vs. Al2O3/(Al2O3+Fe2O3) discrimination diagrams also supports the continental margin (residual basin, s. str.) interpretation. These geochemical results are compatible with geological evidence, which suggest that during the Middle Triassic, radiolarian cherts were deposited within a deeper part of a residual basin in which an accommodation space was possibly controlled by faults under extensional regime subsequent to Late Variscan (Permian) orogeny. Paleogeographically, the main Paleotethys which closed during Late Triassic should be located further to the west of these study localities. This scenario is in agreement with the current view of the Tethys in this part of the world.

Key words

Triassic geochemistry radiolarian chert depositional environment northern Thailand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Chert from the Northern Pacific, Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47: 125–148, doi:10.1016/0037-0738(86)90075-8CrossRefGoogle Scholar
  2. Caridroit, M., 1993. Permian Radiolarian from NW Thailand. In: Thanasuthipitak, T., ed., Proceeding of International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology. Chiang Mai University, Thialand. 83–96Google Scholar
  3. Chaodumrong, P., Burret, C., 1997. Early Late Triassic Continental Colliding between Shan-Thai and Indochina Terranes as Indicated by Occurrence of Fan Delta Red Beds of Pha Daeng Formation, Central North Thailand. In: Dheeradirok, P., Hinthong, C., Chaodumrong, P., et al., eds., Proceedings of International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Geological Survey Division, Department of Mineral Resources, Bangkok, Thailand. 143–157Google Scholar
  4. Charoenprawat, A., Chuaviroj, S., Hinthong, C., et al., 1994. Geologic Map of Changwat Lampang, Scale 1: 250 000. Department of Mineral Resources, Bangkok, ThailandGoogle Scholar
  5. Chen, D. Z., Qing, H. R., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3–4): 203–216CrossRefGoogle Scholar
  6. Chonglakmani, C., 1999. The Triassic System of Thailand: Implications for the Paleogeography of Southeast Asia. In: Rattanasatein, B., ed., Proceeding of International Symposium on Shallow Tethys (ST) 5. Department of Geological Sciences, Chiang Mai University. 486–495Google Scholar
  7. Chonglakmani, C., 2002. Current Status of Triassic Stratigraphy of Thailand and Its Implication for Geotectonic Evolution. Proc. Symp. Geology of Thailand, Department of Mineral Resources, Bangkok, Thailand. 1–3Google Scholar
  8. Chonglakmani, C., Grant-Mackie, J. A., 1993. Biostratigraphy and Facies Variation of the Marine Triassic Sequences in Thailand. In: Thanasuthipitak, T., ed., Proceeding of the International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology. Chiang Mai University, Thailand. 97–123Google Scholar
  9. Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2002. Middle Triassic Radiolarian Fauna from Lumphun, Northern Thailand. In: Proceeding of the International Symposium on Geology of Thailand. Bangkok, Thailand. 26–31Google Scholar
  10. Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2005a. Correlation of Triassic Stratigrasphy between the Simao and Lampang-Phrae Basins: Implication for the Tectonopaleography of Southeast Asia. Journal of Asian Earth Sciences, 24: 777–785CrossRefGoogle Scholar
  11. Feng, Q. L., Malila, K., Wonganan, N., et al., 2005b. Permian and Triassic Radiolaria from Northwest Thailand: Palaeogeographical Implications. Revue de Micropaleontologie, 48(4): 237–255CrossRefGoogle Scholar
  12. Ferrari, O. M., Hochard, C., Stampfli, G. M., 2008. An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451: 346–365CrossRefGoogle Scholar
  13. Geological Survey Division, 1999. Geological Map of Thailand, Scale 1: 2500 000. Department of Mineral Resources, Bangkok, ThailandGoogle Scholar
  14. German, C. R., Klinkhammer, G. P., Edmond, J. M., et al., 1990. Hydrothermal Scavenging of Rare-Earth Elements in the Ocean. Nature, 345: 516–518CrossRefGoogle Scholar
  15. Gromet, L. P., Dymek, R. F., Haskin, L. A., et al., 1984. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochim. Cosmochim. Acta, 48(12): 2469–2482, doi:10.1016/0016-7037(84)90298-9CrossRefGoogle Scholar
  16. Halamić, J., Marchig, V., Goričan, S., 2001. Geochemistry of Triassic Radiolarian Cherts in North-Western Croatia. Geologica Carpathica, 52(6): 327–342Google Scholar
  17. Helmcke, D., 1985. The Permo-Triassic Paleotethys in Mainland Southeast-Asia and Adjacent Parts of China. Geologische Rundschau, 74(2): 215–228, doi: 10.1007/BF01824893CrossRefGoogle Scholar
  18. Helmcke, D., 1994. Distribution of Permian and Triassic Syn-Orogenic Sediments in Central Mainland SE-Asia. In: Angsuwathana, P., Wongwanich, T., Tansathien, W., et al., eds., Proceeding of the International Symposium on Stratigraphic Correlation of Southeast Asia. Bangkok, Thailand. 123–128Google Scholar
  19. Hess, A., Koch, K. E., 1979. Geologic Map of Northern Thailand, Scale 1: 250 000, Sheet 4 (Chiang Dao). Federal Institute for Geosciences and Natural Resources, GermanyGoogle Scholar
  20. Jaeger, H., Stein, V., Wolfart, R., 1969. Fauna (Graptolithen Brachiopoden) der Unterdevonischen Schwarzschiefer Nord-Thailands. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 133: 171–190Google Scholar
  21. Kamata, Y., Sashida, K., Ueno, K., et al., 2002. Triassic Radiolarian Faunas from the Mae Sariang Area, Northern Thailand and Their Paleogeographic Significance. Journal of Asian Earth Sciences, 20: 491–506, doi:10.1016/S1367-9120(01)00047-5CrossRefGoogle Scholar
  22. Kametaka, M., Takebe, M., Nagai, H., et al., 2005. Sedimentary Environments of the Middle Permian Phosphorite-Chert Complex from the Northeastern Yangtze Platform, China, the Gufeng Formation: A Continental Shelf Radiolarian Chert. Sedimentary Geology, 174(3/4): 197–222CrossRefGoogle Scholar
  23. Marchig, V., Gundlach H., Möller P., et al., 1982. Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241–256CrossRefGoogle Scholar
  24. Meesook, A., Suteethon, V., Chaodumrong, P., et al., 2002. Mesozoic Rocks of Thailand: A Summary. In: Montajit, N., Potisat, S., Wongwanich, T., et al., eds., Proceedings of the Symposium on Geology of Thailand. Department of Mineral Resources, Bangkok, Thailand. 82–94Google Scholar
  25. Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90: 213–232CrossRefGoogle Scholar
  26. Murray, R. W., Buchholtz ten Brink, M. R., Gerlach, D. C., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18(3): 268–271CrossRefGoogle Scholar
  27. Murray, R. W., Buchholtz ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, Californian: Assessing REE Sources to Fine-Grained Marine Sediments. Geochim. Cosmochim. Acta, 55(7): 1875–1895CrossRefGoogle Scholar
  28. Rangin, C., Steinberg, M., Bonnot-Courtois, C., 1981. Geochemistry of the Mesozoic Bedded Chert of Central Baja California (Vizcaino-Cedros-San Benito): Implication for Palaogeographic Reconstruction of an Old Oceanic Basin. Earth and Planetary Science Letter, 54: 313–322CrossRefGoogle Scholar
  29. Sashida, K., Igo, H., Hisada, K., et al., 1993. Occurrence of Paleozoic and Early Mesozoic Radiolarian in Thailand (Preliminary Report). Journal of Southeast Asian Earth Sciences, 8: 97–108CrossRefGoogle Scholar
  30. Taylor, S. R., McLennan, S. M., 1985. The Continental Crustal: Its Composition and Evolution. Blackwell, OxfordGoogle Scholar
  31. Thassanapak, H., Chonglakmani, C., Feng, Q. L., et al., 2007. Middle Triassic Radiolarians from Den Chai Area, Northern Thailand. In: Tantiwanit, W., Raksasakulwong, L., Suteethorn, V., et al., eds., Proceeding of the International Conference on Geology of Thailand: Towards Sustainable Development and Sufficiency Economy. Bankkok, Thailand. 180–186Google Scholar
  32. Thassanapak, H., Feng, Q. L., Grant-Mackie, J., et al., 2011. Middle Triassic radiolarian faunas from Chiang Dao, Northern Thailand. Palaeoworld, 20(2–3): 179–202, doi: 10.1016/j.palwor.2010.11.001CrossRefGoogle Scholar
  33. Ueno, K., 2003. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implication for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Paleoecology, 193(1): 1–24CrossRefGoogle Scholar
  34. Wang, X. D., Ueno, K., Mizuno, Y., et al., 2001. Late Paleozoic Faunal, Climatic, and Geographic Changes in the Baochan Block as a Gondwana-Derived Continental Fragment in Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 197–218CrossRefGoogle Scholar
  35. Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1–2): 65–108CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hathaithip Thassanapak
    • 1
  • Mongkol Udchachon
    • 2
  • Chongpan Chonglakmani
    • 3
  • Qinglai Feng (冯庆来)
    • 4
  1. 1.Department of Biology, Faculty of ScienceMahasarakham UniversityMahasarakhamThailand
  2. 2.Palaeontological Research and Education CentreMahasarakham UniversityMahasarakhamThailand
  3. 3.School of Geotechnology, Institute of EngineeringSuranaree University of TechnologyNakhon RatchasimaThailand
  4. 4.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations