Journal of Earth Science

, 22:601

Geological characteristics and model ages of Marius Hills on the Moon

  • Jun Huang (黄俊)
  • Long Xiao (肖龙)
  • Xinxing He (贺新星)
  • Le Qiao (乔乐)
  • Jiannan Zhao (赵健楠)
  • Hui Li (李卉)


Marius Hills is a volcanic plateau on the nearside of the Moon. It is of great interest for its high concentration of volcanic features, including domes, cones, ridges, and rilles. However, the morphological and chronological characteristics of this plateau were not well studied due to the low resolution of early mission data. This study describes the detailed morphology of the volcanic features using the latest high spatial resolution images of the Terrain Camera (TC) onboard Selene-1 (10 m/pix) and Narrow Angle Camera (NAC) onboard the Lunar Reconnaissance Orbiter (LRO) (0.5 m/pix). We report here some new structures such as skylights and remnants of lava tubes. We have divided spectrally homogenous areas with Clementine UVVIS data and did crater size frequency distribution (CSFD) measurements with Lunar Orbiter (LO) IV and TC images in every spectral unit. We first report absolute model ages of 1.10 Ga for Marius basalt 1, 1.49 Ga for Flamsteed basalt, and 1.46 Ga for Schiaparelli Basalt. In addition, we have identified several younger lava events: they are Marius basalt 2 (814 Ma), medium to low titanium basalt (949 Ma), and undifferentiated medium titanium basalt (687 Ma). Finally, we propose a mantle plume scenario for the formation of Marius Hills, which could solve the inconsistency of previous models.

Key Words

the Moon Marius Hills absolute model age volcanic feature mantle plume 

References Cited

  1. Besse, S., Sunshine, J. M., Staid, M. I., et al., 2011. Compositional Variability of the Marius Hills Volcanic Complex from the Moon Mineralogy Mapper (M3). J. Geophys. Res., 116: E00G13CrossRefGoogle Scholar
  2. Boyce, J. M., Jonnson, D. A., 1978. Ages of Flow Units in the Far Eastern Maria and Implications for Basin-Filling History. In: Lunar and Planetary Science Conference Proceedings. 3275–3283Google Scholar
  3. Burgess, R., Turner, G., 1998. Laser 40Ar-39Ar Age Determinations of Luna 24 Mare Basalt. Meteoritics and Planetary Science, 33: 921–935CrossRefGoogle Scholar
  4. Ciesla, F. J., Keszthelyi, L., 2000. A Simple Model for Lava Flow Quarrying: Mechanical Erosion of the Substrate. In: Proceedings of the 31st Lunar and Planetary Science Conference. Houston, TX, United States. 1647Google Scholar
  5. Fagents, S. A., Williams, D. A., Greeley, R., 2000. Thermal Erosion by Laminar Lava Flows: New Inferences. In: Proceedings of the 31st Lunar and Planetary Science Conference. Houston, TX, United States. 1038Google Scholar
  6. Greeley, R., 1971. Lava Tubes and Channels in the Lunar Marius Hills. The Moon, 3(3): 289–314CrossRefGoogle Scholar
  7. Hartmann, W. K., Neukum, G., 2001. Cratering Chronology and the Evolution of Mars. Space Sci. Rev., 96(1–4): 165–194CrossRefGoogle Scholar
  8. Haruyama, J., Hioki, K., Shirao, M., et al., 2009. Possible Lunar Lava Tube Skylight Observed by SELENE Cameras. Geophys. Res. Lett., 36(21): 21206CrossRefGoogle Scholar
  9. Head, J. W., Gifford, A., 1980. Lunar Mare Domes: Classification and Modes of Origin. The Moon and the Planets, 22(2): 235–258CrossRefGoogle Scholar
  10. Head, J. W., Wilson, L., 1991. Absence of Large Shield Volcanoes and Calderas on the Moon: Consequence of Magma Transport Phenomena? Geophys. Res. Lett., 18: 2121–2124CrossRefGoogle Scholar
  11. Head, J. W., Wilson, L., 1992. Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and the Evolution of Secondary Crusts. Geochimica et Cosmochimica Acta, 56(6): 2155–2175CrossRefGoogle Scholar
  12. Heather, D. J., Dunkin, S. K., Wilson, L., 2003. Volcanism on the Marius Hills Plateau: Observational Analyses Using Clementine Multispectral Data. J. Geophys. Res., 108: 5017CrossRefGoogle Scholar
  13. Hiesinger, H., Jaumann, R., Neukum, G., et al., 2000. Ages of Mare Basalts on the Lunar nearside. J. Geophys. Res., 105(E12): 29239–29275CrossRefGoogle Scholar
  14. Hulme, G., 1973. Turbulent Lava Flow and the Formation of Lunar Sinuous Rilles. Modern Geology, 4(2): 107–117Google Scholar
  15. Ivanov, B. A., 2001. Mars/Moon Cratering Rate Ratio Estimates. Space Sci. Rev., 96(1–4): 87–104CrossRefGoogle Scholar
  16. Lawrence, S. J., Stopar, J. D., Hawke, B. R., et al., 2010. LROC Observations of the Marius Hills. In: Proceedings of the 41st Lunar and Planetary Science Conference. Houston, TX, United States. 1906Google Scholar
  17. Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res., 105(E8): 20297–20305CrossRefGoogle Scholar
  18. McCauley, J. F., 1967. Geologic Map of the Hevelius Region of the Moon. U.S. Geological Survey, Reston, VA, United StatesGoogle Scholar
  19. McGauley, J. F., 1969. The Domes and Cones in the Marius Hill Region: Evidence for Lunar Differentiation? Moon, 1: 133–134Google Scholar
  20. Neukum, G., 1983. Meteoritenbombardement und Datierung Planetarer Oberflächen, Habilitationsschrift: [Dissertation]. Univ. München, Munich, Germany (in German)Google Scholar
  21. Neukum, G., Ivanov, B. A., 1994. Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial-Planet, and Asteroid Cratering Data. In: Gehrels, T., ed., Hazards due to Comets and Asteroids. University of Arizona Press, Tucson, AZ, United States. 359–416Google Scholar
  22. Neukum, G., Ivanov, B. A., Hartmann, W. K., 2001. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Sci. Rev., 96(1–4): 55–86CrossRefGoogle Scholar
  23. Ping, J. S., Huang, Q., Su, X. L., et al., 2009. Chang’E-1 Orbiter Discovers a Lunar Nearside Volcano: YUTU Mountain. Chinese Science Bulletin, 54(23): 4534–4536CrossRefGoogle Scholar
  24. Rutherford, M. J., Hess, P. C., Daniel, G. H., 1974. Liquid Lines of Descent and Liquid Immiscibility in High Ti Lunar Basalt. Lunar Sci. Inst., Houston, Texas, United States. 657–659Google Scholar
  25. Stöffler, D., Ryder, G., 2001. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Sci. Rev., 96(1–4): 9–54CrossRefGoogle Scholar
  26. van der Bogert, C. H., Hiesinger, H., McEwen, A. S., et al., 2010. Discrepancies between Crater Size-Frequency Distributions on Ejecta and Impact Melt Pools at Lunar Craters: An Effect of Differing Target Properties? In: Proceedings of the 41st Lunar and Planetary Science Conference. Houston, Texas, United States. 2165Google Scholar
  27. Weitz, C. M., Head, J. W., 1999. Spectral Properties of the Marius Hills Volcanic Complex and Implications for the Formation of Lunar Domes and Cones. J. Geophys. Res., 104(E8): 18933–18956CrossRefGoogle Scholar
  28. Whitford-Stark, J. L., Head, J. W., 1977. The Procellarum Volcanic Complexes: Contrasting Styles of Volcanism. In: Proceedings of the 8th Lunar and Planetary Science Conference. Houston, TX, United States. 2705–2724Google Scholar
  29. Whitford-Stark, J. L., Head, J. W., 1980. Stratigraphy of Oceanus Procellarum Basalts: Sources and Styles of Emplacement. J. Geophys. Res., 85(B11): 6579–6609CrossRefGoogle Scholar
  30. Wilson, L., Head, J. W., 1981. Ascent and Eruption of Basaltic Magma on the Earth and Moon. J. Geophys. Res., 86(B4): 2971–3001CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jun Huang (黄俊)
    • 1
  • Long Xiao (肖龙)
    • 1
  • Xinxing He (贺新星)
    • 1
  • Le Qiao (乔乐)
    • 1
  • Jiannan Zhao (赵健楠)
    • 1
  • Hui Li (李卉)
    • 1
  1. 1.Planetary Science InstituteChina University of GeosciencesWuhanChina

Personalised recommendations