Journal of Earth Science

, Volume 22, Issue 2, pp 143–154 | Cite as

Influences of lower-mantle properties on the formation of asthenosphere in oceanic upper mantle



Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelling. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upwellings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.

Key Words

oceanic asthenosphere lower mantle thermal expansivity thermal conductivity phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Ammann, M. W., Brodholt, J. P., Wookey, J., et al., 2010. First-Principles Constraints on Diffusion in Lower Mantle Minerals and a Weak D” Layer. Nature, 465(7297): 462–465CrossRefGoogle Scholar
  2. Bina, C. R., Helffrich, G., 1994. Phase Transitions Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography. J. Geophys. Res., 99(B8): 15853–15860CrossRefGoogle Scholar
  3. Bottinga, Y., Allegre C. J., 1973. Thermal Aspects of Seafloor Spreading and the Nature of the Oceanic Crust. Tectonophysics, 18(1–2): 1–17CrossRefGoogle Scholar
  4. Čadek, O., van der Berg, A. P., 1998. Radial Profiles of Temperature and Viscosity in the Earth’s Mantle Inferred from the Geoid and Lateral Seismic Structure. Earth Planet. Sci. Lett., 164(3–4): 607–615Google Scholar
  5. Cao, Q., Wang, P., van der Hilst, R. D., et al., 2010a. Imaging the Upper Mantle Transition Zone with a Generalized Radon Transform of SS Precursors. Phys. Earth Planet. Inter., 180(1–2): 80–91CrossRefGoogle Scholar
  6. Cao, Q., van der Hilst, R. D., de Hoop, M. V., et al., 2010b. Complex Plume Dynamics in the Transition Zone underneath the Hawaii Hotspot: Seismic Imaging Results. AGU Fall MeetingGoogle Scholar
  7. Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophys. Res. Lett., 19(19): 1983–1986CrossRefGoogle Scholar
  8. Daly, R. A., 1914. Igneous Rocks and Their Origin. McGraw-Hill, New York. 563Google Scholar
  9. Davies, G. F., 1999. Dynamic Earth. Cambridge University Press, Cambridge. 458CrossRefGoogle Scholar
  10. de Koker, N., 2010. Thermal Conductivity of MgO Periclase at High Pressure: Implications for the D” Region. Earth Planet. Sci. Lett., 292(3–4): 392–398CrossRefGoogle Scholar
  11. Dixon, J. E., Dixon, T. H., Bell, D. R., et al., 2004. Lateral Variation in Upper Mantle Viscosity: Role of Water. Earth Planet. Sci. Lett., 222(2): 451–467CrossRefGoogle Scholar
  12. Elsasser, W. M., 1969. Convection and Stress Propagation in the Upper Mantle. In: Runcorn, S. K., ed., The Application of Modern Physics to the Earth and Planetary Interiors. Wiley, New York. 223–246Google Scholar
  13. Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049–1056CrossRefGoogle Scholar
  14. Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth’s Lower Mantle. Phys. Earth Planet. Inter., 180(3–4): 148–153CrossRefGoogle Scholar
  15. Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Phys. Earth Planet. Inter., 77(3–4): 205–223CrossRefGoogle Scholar
  16. Hanyk, L., Moser, J., Yuen, D. A., et al., 1995. Time-Domain Approach for the Transient Responses in Stratified Viscoelastic Earth Models. Geophys. Res. Lett., 22(10): 1285–1288CrossRefGoogle Scholar
  17. Hernlund, J. W., Thomas, C., Tackley, P. J., 2005. A Doubling of the Post-Perovskite Phase Boundary and Structure of the Earth’s Lowermost Mantle. Nature, 434(7035): 882–886CrossRefGoogle Scholar
  18. Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. Proc. Natl. Acad. Sci., 104(22): 9192–9197CrossRefGoogle Scholar
  19. Hofmeister, A. M., 2008. Inference of High Thermal Transport in the Lower Mantle from Laser-Flash Experiments and the Damped Harmonic Oscillator Model. Phys. Earth Planet. Inter., 170(3–4): 201–206CrossRefGoogle Scholar
  20. Hoink, T., Lenardic, A., 2008. Three-Dimensional Mantle Convection Simulations with a Low-Viscosity Asthenosphere and the Relationship between Heat Flow and the Horizontal Length Scale of Convection. Geophys. Res. Lett., 35(10): L10304CrossRefGoogle Scholar
  21. Huettig, C., 2008. Scaling Laws for Internally Heated Mantle Convection: [Dissertation]. Westfaelischen Wilhelms-Universitaet, MuensterGoogle Scholar
  22. Huettig, C., Stemmer, K., 2008. Finite Volume Discretization for Dynamic Viscosities on Voronoi Grids. Phys. Earth Planet. Inter., 171(1–4): 137–146CrossRefGoogle Scholar
  23. Hunt, S. A., Weidner, D. J., Li, L., et al., 2009. Weakening of Calcium Iridate during Its Transformation from Perovskite to Post-Perovskite. Nature Geosci., 2(11): 794–797CrossRefGoogle Scholar
  24. Karato, S. I., 1986. Does Partial Melting Reduce the Creep Strength of the Upper Mantle? Nature, 319(6051): 309–310CrossRefGoogle Scholar
  25. Karato, S. I., 2008. Insights into the Nature of Plume-Asthenosphere from Central Pacific Geophysical Anomalies. Earth Planet. Sci. Lett., 274(1–2): 234–240CrossRefGoogle Scholar
  26. Karato, S. I., 2010. The Influence of Anisotropic Diffusion on the High-Temperature Creep of a Polycrystalline Aggregate. Phys. Earth Planet. Inter., 183(3–4): 468–472CrossRefGoogle Scholar
  27. Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. P-V-T Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophys. Res. Lett., 36: L01305CrossRefGoogle Scholar
  28. Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci., 106(52): 22119–22123CrossRefGoogle Scholar
  29. King, S. D., 2009. On Topography and Geoid from 2-D Stagnant-Lid Convection Calculations. Geochem., Geophys., Geosyst., 10: Q03002CrossRefGoogle Scholar
  30. King, S. D., Lee, C., Van-Keken, P. E., et al., 2010. A Community Benchmark for 2D Cartesian Compressible Convection in the Earth’s Mantle. Geophys. J. Int., 180(1): 73–87CrossRefGoogle Scholar
  31. Leitch, A. M., Yuen, D. A., Sewell, G., 1991. Mantle Convection with Internal Heating and Pressure-Dependent Thermal Expansivity. Earth Planet. Sci. Lett., 102(2): 213–232CrossRefGoogle Scholar
  32. Maruyama, S., 1994. Plume Tectonics. J. Geol. Soc. Japan, 100: 24–49Google Scholar
  33. Matyska, C., Yuen, D. A., 2006. Lower Mantle Dynamics with the Post-Perovskite Phase Change, Radiative Thermal Conductivity, Termperature and Depth-Dependent Viscosity. Phys. Earth Planet. Inter., 154(2): 196–207CrossRefGoogle Scholar
  34. Matyska, C., Yuen, D. A., 2007. Lower Mantle Material Properties and Convection Models of Multiscale Plumes. In: Fougler, G. T., Jurdy, D. M., eds., Plates, Plumes and Planetary Processes. Geological Society of America Special Paper, 137–163Google Scholar
  35. Mitrovica, J. X., Forte, A. M., 2004. A New Inference of Mantle Viscosity Based upon Joint Inversion of Convection and Glacial Isostatic Adjustment Data. Earth Planet. Sci. Lett., 225(1–2): 177–189CrossRefGoogle Scholar
  36. Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigations of 2D Convection with Extremely Large Viscosity Variations. Phys. Fluids, 7: 2154–2162CrossRefGoogle Scholar
  37. Nakagawa, T., Tackley, P. J., 2004. Effects of a Perovskite-Post Perovskite Phase Change near Core-Mantle Boundary in Compressible Mantle Convection. Geophys. Res. Lett., 31(16): L16611CrossRefGoogle Scholar
  38. Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth Planet. Sci. Lett., 296(3–4): 403–412CrossRefGoogle Scholar
  39. O’Farrell, K. A., Lowman, J. P., 2010. Emulating the Thermal Structure of Spherical Shell Convection in Plane-Layer Geometry Mantle Convection Models. Phys. Earth Planet. Inter., 182(1–2): 73–84CrossRefGoogle Scholar
  40. Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earth’s D” Layer. Nature, 430(6998): 445–448CrossRefGoogle Scholar
  41. Oganov, A. R., Ono, S., 2005. The High Pressure Phase of Alumina and Implications for Earth’s D” Layer. Proc. Natl. Acad. Sci., 102(31): 10828–10831CrossRefGoogle Scholar
  42. Ohta, K., 2010. Electrical and Thermal Conductivity of the Earth’s Lower Mantle: [Dissertation]. Tokyo Institute of Technology, TokyoGoogle Scholar
  43. Oldenbur, D. W., Brune, J. N., 1972. Ridge Transform Fault Spreading Pattern in Freezing Wax. Science, 178(4058): 301–304CrossRefGoogle Scholar
  44. Parmentier, E. M., 2007. The Dynamics and Convective Evolution of the Oceanic Upper Mantle. In: Schubert, G., Bercovici, D., eds., Treatise on Geophysics. Cambridge University Press, Cambridge. 7: 305–324CrossRefGoogle Scholar
  45. Poirier, J. P., 1991. Introduction to the Physics of the Earth’s Interior. Cambridge University Press, CambridgeGoogle Scholar
  46. Ricard, Y., Bai, W. M., 1991. Inferring Viscosity and the 3-D Density Structure of the Mantle from Geoid, Topography and Plate Velocities. Geophys. J. Int., 105(3): 561–571CrossRefGoogle Scholar
  47. Richards, M. A., Yang, W. S., Baumgardner, J. R., et al., 2001. Role of a Low-Viscosity Zone in Stabilizing Plate Tectonics: Implications for Comparative Terrestrial Planetology. Geochem., Geophys., Geosyst., 2(8), doi: 10.1029/2000GC000115Google Scholar
  48. Richter, F., 1973. Finite Amplitude Convection through a Phase Boundary. Geophys. J. R. Astron. Soc., 35(1–3): 265–276Google Scholar
  49. Schenk, O., Gartner, K., Fichtner, W., 2000. Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1): 158–176CrossRefGoogle Scholar
  50. Schubert, G., Froidevaux, C., Yuen, D. A., 1976. Oceanic Lithosphere and Asthenosphere: Thermal and Mechanical Structure. J. Geophys. Res., 81(20): 3525–3540CrossRefGoogle Scholar
  51. Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge. 940CrossRefGoogle Scholar
  52. Spiegelman, M., Katz, R. F., 2006. A Semi-Lagrangian Crank-Nicolson Algorithm for the Numerical Solution of Advection-Diffusion Problems. Geochem., Geophys., Geosyst., 7: Q04014CrossRefGoogle Scholar
  53. Stein, C., Hansen, U., 2008. Plate Motions and the Viscosity Structure of the MZantle—Insights from Numerical Modelling. Earth Planet. Sci. Lett., 272(1–2): 29–40CrossRefGoogle Scholar
  54. Steinbach, V., Yuen, D. A., 1995. The Effects of Temperature-Dependent Viscosity on Mantle Convection with the Two Major Phase Transitions. Phys. Earth Planet. Inter., 90(1–2): 13–36CrossRefGoogle Scholar
  55. Tang, X. L., Dong, J. J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth’s Interior. Proc. Natl. Acad. Sci. USA, 107(10): 4539–4543CrossRefGoogle Scholar
  56. Tateno, S., Hirose, K., Sata, N., et al., 2009. Determination of Post-Perovskite Phase Transition Boundary up to 4 400 K and Implications for Thermal Structure in D” Layer. Earth Planet. Sci. Lett., 277(1–2): 130–136CrossRefGoogle Scholar
  57. Tosi, N., Sabadini, R., Marotta, A. M., et al., 2005. Simultaneous Inversion for the Earth’s Mantle Viscosity and Ice Mass Imbalance in Antarctica and Greenland. J. Geophys. Res., 110: B07402CrossRefGoogle Scholar
  58. Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth Planet. Sci. Lett., 298(1–2): 229–243CrossRefGoogle Scholar
  59. van Bemmelen, R. W., Berlage, H. P., 1934. Versuch Einer Mathematischen Behandlung Geotektonischer Bewegungen Unter Besonderer Beruecksichtigung der Undationstheorie. Gerlands. Beitr. Z. Geophys., 43(1–2): 19–55 (in German)Google Scholar
  60. Walte, N. P., Heidelbach, F., Miyajima, N., et al., 2009. Transformation Textures in Post-Perovskite: Understanding Mantle Flow in the D” Layer of the Earth. Geophys. Res. Lett., 36: L04302CrossRefGoogle Scholar
  61. Wentzcovitch, R. M., Justo, J. F., Wu, Z., et al., 2009. Anomalous Compressibility of Ferropericlase throughout the Iron Spin Cross-over. Proc. Natl. Acad. Sci. USA, 106(21): 8447–8452Google Scholar
  62. Wentzcovitch, R. M., Yu, Y. G., Wu, Z. Q., 2010. Thermodynamic Properties and Phase Relations in Mantle Minerals Investigated by First Priniciples Quasiharmonic Theory. Reviews in Mineralogy and Geochemistry, 71: 59–98CrossRefGoogle Scholar
  63. Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Phys. Earth. Planet. Inter., 143–144: 321–336CrossRefGoogle Scholar
  64. Yamamoto, M., Morgan, J. P., Morgan, W. J., 2007. Global Plume-Fed Asthenosphere Flow—I: Motivation and Model Development. GSA Special Papers, 430: 165–188Google Scholar
  65. Yamazaki, D., Karato, S., 2007. Lattice Preferred Orientation of Lower Mantle Materials and Seismic Anisotropy in the D” Layer. In: Hirose, K., Brodholt, J., Lay, T., et al., eds., Post-Perovskite: The Last Mantle Phase Transition. AGU Monograph, 174: 69–78Google Scholar
  66. Yoshino, T., Yamazaki, D., 2007. Grain Growth Kinetics of CaIrO3 Perovskite and Post-Perovskite, with Implications for Rheology of D” Layer. Earth Planet. Sci. Lett., 255(3–4): 485–493CrossRefGoogle Scholar
  67. Yu, Y., Wu, Z., Wentzcovitch, R. M., 2008. α-β-γ Transformations in Mg2SiO4 in Earth’s Transition Zone. Earth Planet. Sci. Lett., 273: 115–122CrossRefGoogle Scholar
  68. Yuen, D. A., Cadek, O., van Keken, P., et al., 1996. Combined Results from Mineral Physics, Tomography and Mantle Convection and Their Implications on Global Geodynamics. In: Boschi, E., Morelli, A., Ekstrom, G., eds., Seismic Modelling of the Earth’s Structure. Editrice Compositori, Bologna. 463–505Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Geology and Geophysics and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Planetary Physics, Institute of Planetary ResearchGerman Aerospace Center (DLR)BerlinGermany
  3. 3.Department of Geophysics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations