Journal of Earth Science

, Volume 22, Issue 1, pp 117–123 | Cite as

Rayleigh wave group velocity distribution in Ningxia

  • Hongyi Li (李红谊)
  • Xin Liu (刘昕)
  • Xinfu Li (李信富)
  • Juqin Sheng (盛菊琴)
  • Xinhua Cai (蔡新华)
  • Tongli Wang (王同利)


In this article, seven months ambient noise data and 10 events recorded at seven digital stations from the Ningxia (宁夏) regional seismic network and 5 500-t controlled source explosion data recorded by 15 temporary and 7 permanent seismic stations are used to measure dispersion curves of fundamental mode Rayleigh waves. The study region was divided into grids with 0.1°×0.1°; group velocity distributions of Rayleigh waves from 6–22 s were determined with the Occam’s inversion technique. These velocity distribution maps show the lateral velocity variations in the study area, and the velocity structures are correlated with surface geology and tectonic units. The Yinchuan (银川) basin is clearly featured with low velocities, and the Helan (贺兰) Mountain and southern mountain areas are revealed with high velocities.

Key Words

Rayleigh wave group velocity ambient noise explosion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bensen, G. D., Ritzwoller, M. H., Shapiro, N. M., 2008. Broadband Ambient Noise Surface Wave Tomography across the United States. J. Geophys. Res., 113: B05306. doi: 10.1029/2007JB005248CrossRefGoogle Scholar
  2. Campillo, M., Paul, A., 2003. Long-Range Correlations in the Diffuse Seismic Coda. Science, 299(5606): 547–549CrossRefGoogle Scholar
  3. Constable, S. C., Parker, R. L., Constable, C. G., 1987. Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 52(3): 289–300CrossRefGoogle Scholar
  4. Derode, A., Larose, E., Tanter, E., et al., 2003. Recovering the Green’s Function from Field-Field Correlations in an Open Scattering Medium. Journal of the Acoustical Society of America, 113(6): 2973–2976CrossRefGoogle Scholar
  5. Dziewonski, A., Bloch, S., Landisman, M., 1969. A Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 59: 427–444Google Scholar
  6. Herrmann, R. B., 1973. Some Aspects of Band-Pass Filtering of Surface Waves. Bulletin of the Seismological Society of America, 63: 663–671Google Scholar
  7. Jin, Y. L., Yang, M. Z., Zhao, W. M., et al., 1999. Inversion of 3-D Crustal P-Wave Velocity Structure in Ningxia and Its Neighborhood by Using Direct, Reflected and Refracted Waves. Acta Seismologica Sinica, 12(4): 436–446CrossRefGoogle Scholar
  8. Levshin, A. L., Yanovskaya, T. B., Lander, A. V., et al., 1989. Seismic Surface Waves in a Laterally Inhomogeneous Earth. Kluwer Academic Publishers, Norwell, MassGoogle Scholar
  9. Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282(1–4): 201–211CrossRefGoogle Scholar
  10. Li, S. L., Zhang, X. K., Zhang, C. K., et al., 2002. A Preliminary Study on the Crustal Velocity Structure of Maqin-Lanzhou-Jingbian, China, by Means of Deep Seismic Sounding Profile. Acta Geophysica Sinica, 45(2): 210–217 (in Chinese with English Abstract)Google Scholar
  11. Lin, F. C., Ritzwoller, M. H., Townend, J., et al., 2007. Ambient Noise Rayleigh Wave Tomography of New Zealand. Geophysical Journal International, 170(2): 649–666CrossRefGoogle Scholar
  12. Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005. Surface Wave Tomography from Microseism in Southern California. Geophysical Research Letters, 32: L14311. doi:10.1029/2005GL023155CrossRefGoogle Scholar
  13. Shapiro, N. M., Campillo, M., 2004. Emergence of Broadband Rayleigh Waves from Correlations of the Ambient Seismic Noise. Geophysical Research Letters, 31: L07614. doi:10.1029/2004GL019491CrossRefGoogle Scholar
  14. Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615–1618CrossRefGoogle Scholar
  15. Snieder, R., 2004. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E 69(4) 046610. doi:10.1103/PhysRevE.69.046610Google Scholar
  16. The Committee Compiled Earth Science Profiles, SSB, 1992. The Earth Science Profile Extending from Feng County, Shanghai, to Alxa Zuoqi County, Inner Mongolia Autonomous Region. Seismological Press, Beijing (in Chinese)Google Scholar
  17. Wapenaar, K., 2004. Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 93: 254301. doi: 10.1103/PhysRevLett.93.254301CrossRefGoogle Scholar
  18. Weaver, R. L., 2005. Information from Seismic Noise. Science, 307(5715): 1568–1569CrossRefGoogle Scholar
  19. Weaver, R. L., Lobkis, O. L., 2004. Diffuse Fields in Open System and the Emergence of the Green’s Function. Journal of the Acoustical Society of America, 116(5): 2731–2734CrossRefGoogle Scholar
  20. Yang, Y. J., Ritzwoller, M. H., Levshin, A. L., et al., 2007. Ambient Noise Rayleigh Wave Tomography across Europe. Geophysical Journal International, 168(1): 259–274CrossRefGoogle Scholar
  21. Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis: II, Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1): 205–219CrossRefGoogle Scholar
  22. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–80CrossRefGoogle Scholar
  23. Zhang, J. L., Shi, L. T., Wei, P. S., et al., 2009. Deep Crustal Structure and Hydrocarbon Accumulation in Ordos Basin. Xinjiang Petroleum Geology, 30(2): 272–278 (in Chinese with English Abstract)Google Scholar
  24. Zhao, B. M., Xie, X. F., Chai, C. Z., et al., 2007. Imaging the Graben Structure in the Deep Basin with a Microtremor Profile Crossing the Yinchuan City. Journal of Geophysics Engineering, 4: 293–300CrossRefGoogle Scholar
  25. Zheng, S., Sun, X., Song, X., et al., 2008. Surface Wave Tomography of China from Ambient Seismic Noise Correlation. Geochem. Geophys. Geosyst., 9: Q05020. doi:10.1029/2008GC001981CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongyi Li (李红谊)
    • 1
    • 2
  • Xin Liu (刘昕)
    • 2
  • Xinfu Li (李信富)
    • 2
  • Juqin Sheng (盛菊琴)
    • 3
  • Xinhua Cai (蔡新华)
    • 3
  • Tongli Wang (王同利)
    • 4
  1. 1.Key Laboratory of Geo-detection (China University of Geosciences, Beijing)Ministry of EducationBeijingChina
  2. 2.School of Geophysics and Information TechnologyChina University of GeosciencesBeijingChina
  3. 3.Earthquake Administration of Ningxia Hui Autonomous RegionYinchuanChina
  4. 4.Earthquake Administration of Beijing MunicipalityBeijingChina

Personalised recommendations