Journal of Earth Science

, Volume 21, Issue 6, pp 835–845 | Cite as

Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China

  • Sarah SchönbrodtEmail author
  • Patrick Saumer
  • Thorsten Behrens
  • Christoph Seeber
  • Thomas Scholten


Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (C FVC) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (C LIT). In 2007, the values of CFVC range between 0.001 and 0.98 in the Xiangxi catchment. The mean C FVC value is 0.05. C LIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using C LIT for modeling. Based on C FVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, C LIT appears to be more reliable than the C factor based on the fractional vegetation cover.

Key Words

C factor soil erosion modeling Universal Soil Loss Equation fractional vegetation cover Three Gorges Dam Yangtze River 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Behrens, T., Schmidt, K., Scholten, T., 2008. An Approach to Remove Uncertainties in Nominal Environmental Covariates and Soil Class Maps. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 213–224CrossRefGoogle Scholar
  2. Boettinger, J. L., Ramsey, R. D., Bodily, J. M., et al., 2008. Landsat Spectral Data for Digital Soil Mapping. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 193–202CrossRefGoogle Scholar
  3. Brady, N. C., Weil, R. R., 2007. The Nature and Properties of Soil. 14th Edition. Prentice Hall, New Jersey. 980Google Scholar
  4. Cai, Q. G., Wang, H., Curtin, D., et al., 2005. Evaluation of the EUROSEM Model with Single Event Data on Steeplands in the Three Gorges Reservoir Areas, China. Catena, 59(1): 19–33CrossRefGoogle Scholar
  5. de Asis, A. M., Omasa, K., 2007. Estimation of Vegetation Parameter for Modeling Soil Erosion Using Linear Spectral Mixture Analysis of Landsat ETM Data. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4): 309–324CrossRefGoogle Scholar
  6. de Jong, S. M., 1994. Derivation of Vegetative Variables from a Landsat TM Image for Modelling Soil Erosion. Earth Surface Processes and Landforms, 19(2): 165–178CrossRefGoogle Scholar
  7. Eastman, J. R., Fulk, M., 1993. Long Sequence Time-Series Map Evaluation Using Standardized Principal Components. Photogrammetric Engineering and Remote Sensing, 59(6): 991–996Google Scholar
  8. Erencin, Z., 2000. C-Factor Mapping Using Remote Sensing and GIS-A Case Study of LOM Sak/Lom Kao, Thailand: [Dissertation]. ITC, HollandGoogle Scholar
  9. He, K. Q., Li, X. R., Yan, X. Q., et al., 2008. The Landslides in the Three Gorges Reservoir Region, China and the Effects of Water Storage and Rain on Their Stability. Environmental Geology, 55(1): 55–63CrossRefGoogle Scholar
  10. Huang, Z. Q., Zhou, W. C., Zhou, J. M., et al., 2006. Land Use of the Three Gorges Reservoir Area and the Effect on Its Landscape Pattern in the Recent 50 Years. Wuhan University Journal of Natural Sciences, 11(4): 910–914CrossRefGoogle Scholar
  11. Jensen, J. R., 2000. Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall, New Jersey. 544Google Scholar
  12. Lillesand, T. M., Kiefer, R. W., Chipman, J. W., 2007. Remote Sensing and Image Interpretation. 6th Edition. John Wiley and Sons, New York. 768Google Scholar
  13. Liu, Y., Luo, Z., 2005. A Study on Estimation of the Amount of Soil Erosion in Small Watershed Based on GIS: A Case Study in the Three Gorge Area of China. International Geoscience and Remote Sensing Symposium Proceedings, 3: 1859–1863Google Scholar
  14. McDonald, B., Webber, M., Duan, Y. F., 2008. Involuntary Resettlement as an Opportunity for Development: The Case of Urban Resettlers of the Three Gorges Project, China. Journal of Refugee Studies, 21(1): 82–102CrossRefGoogle Scholar
  15. Meng, Q. H., Fu, B. J., Yang, L. Z., 2001. Effects of Land Use on Soil Erosion and Nutrient Loss in the Three Gorges Reservoir Area, China. Soil Use and Management, 17(4): 288–291CrossRefGoogle Scholar
  16. Neubert, M., Meinel, G., 2005. Atmosphärische und Topographische Korrektur von IKONOS-Daten mit ATCOR. In: Strobl, J., Blaschke, T., Griesebner, G., eds., Angewandte Geoinformatik 2005. Beiträge zum 17, AGIT-Symposium, Salzburg, Heidelberg, Wichmann. 503–512 (in German)Google Scholar
  17. Pimentel, D., 2006. Soil Erosion: A Food and Environmental Threat. Environment Development and Sustainability, 8(1): 119–137CrossRefGoogle Scholar
  18. Renard, K. G., Foster, G. R., Weesies, G. A., et al., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agriculture Handbook, Washington, DC. 703, 384Google Scholar
  19. Richards, J. A., Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. 4th Edition. Springer-Verlag, Berlin. 439Google Scholar
  20. Richter, R., 2010. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR 2/3 User Guide, Version 7.1, January 2008). 165.
  21. Rouse, J. W., Haas, R. W., Schell, J. A., et al., 1974. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USAGoogle Scholar
  22. Seeber, C., Hartmann, H., Xiang, W., et al., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855CrossRefGoogle Scholar
  23. Shi, Z. H., Cai, C. F., Ding, S. W., et al., 2004. Soil Conservation Planning at the Small Watershed Level Using RUSLE with GIS: A Case Study in the Three Gorges Area of China. Catena, 55(1): 33–48CrossRefGoogle Scholar
  24. Shi, X. Z., Yu, D. S., Xu, S. X., et al., 2010. Cross-Reference for Relating Genetic Soil Classification of China with WRB at Different Scales. Geoderma, 155(3–4): 344–350CrossRefGoogle Scholar
  25. Schönbrodt, S., Ehret, D., Seeber, C., et al.. Geo-risks in the Highly Dynamic Three Gorges Reservoir Ecosystem: Interactions of Soil Erosion, Mass Movements, and Land Use. Earth Surface Processes and Landforms (Submitted)Google Scholar
  26. Sun, X. X., Zhang, J. X., Liu, Z. J., 2008. Vegetation Cover Annual Changes Based on MODIS/TERRA NDVI in the Three Gorges Reservoir Area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1397–1400Google Scholar
  27. Suriyaprasit, M., Shrestha, D. P., 2008. Deriving Land Use and Canopy Cover Factor from Remote Sensing and Field Data in Inaccessible Mountainous Terrain for Use in Soil Erosion Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1747–1750Google Scholar
  28. Tan, Y., Bryan, B., Hugo, G., 2005. Development, Land-Use Change and Rural Resettlement Capacity: A Case Study of the Three Gorges Project, China. Australian Geographer, 36(2): 201–220CrossRefGoogle Scholar
  29. Tarboton, D. G., 1997. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33(2): 309–319CrossRefGoogle Scholar
  30. Wang, G., Wente, S., Gertner, G. Z., et al., 2002. Improvement in Mapping Vegetation Cover Factor for the Universal Soil Loss Equation by Geostatistical Methods with Landsat Thematic Mapper Images. International Journal of Remote Sensing, 23(18): 3649–3667CrossRefGoogle Scholar
  31. Wischmeier, W. H., Smith, D. D., 1965. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains-Guide for Selection of Practices for Soil and Water Conservation. USDA, Agriculture Handbook, Washington DC. 282Google Scholar
  32. Wischmeier, W. H., Smith, D. D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA, Agriculture Handbook, Washington DC. 537Google Scholar
  33. Xu, Y. Q., Peng, J., Shao, X. M., 2009. Assessment of Soil Erosion Using RUSLE and GIS: A Case Study of the Maotiao River Watershed, Guizhou Province, China. Environmental Geology, 56(8): 1643–1652CrossRefGoogle Scholar
  34. Yang, Y. S., Shi, D. M., 1994. Study on Soil Erosion in the Three Gorges Area of the Changgjiang River. Southeast Univ. Press, Nanjing (in Chinese)Google Scholar
  35. Zhou, P., 2008. Landscape-Scale Soil Erosion Modeling and Ecological Restoration for a Mountainous Watershed in Sichuan, China: [Dissertation]. Department of Forest Ecology, University of Helsinki, HelsinkGoogle Scholar
  36. Zhou, P., Luukkanen, O., Tokola, T., et al., 2008. Effect of Vegetation Cover on Soil Erosion in a Mountainous Watershed. Catena, 75(3): 319–325CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sarah Schönbrodt
    • 1
    Email author
  • Patrick Saumer
    • 2
  • Thorsten Behrens
    • 1
  • Christoph Seeber
    • 3
  • Thomas Scholten
    • 1
  1. 1.Institute of Geography, Department of Physical Geography and Soil ScienceUniversity of TübingenTübingenGermany
  2. 2.Science Strategy, Coordination and Planning OfficeEuropean Space Agency-ESRINFrascatiItaly
  3. 3.Center for International Development and Environmental ResearchGiessen UniversityGiessenGermany

Personalised recommendations