Advertisement

Journal of Earth Science

, Volume 21, Issue 6, pp 824–834 | Cite as

Frequency ratio analysis of mass movements in the Xiangxi catchment, Three Gorges Reservoir area, China

  • Dominik EhretEmail author
  • Joachim Rohn
  • Christian Dumperth
  • Susan Eckstein
  • Stefanie Ernstberger
  • Karel Otte
  • René Rudolph
  • Johannes Wiedenmann
  • Wei Xiang (项伟)
  • Renneng Bi (毕仁能)
Article

Abstract

In 2003, the Three Gorges Project (TGP, China), currently the world’s largest hydroelectric power plant by total capacity, went into operation. Due to large-scale impoundment of the Yangtze River and its tributaries and also due to resettlement, extensive environmental impacts like land use change and increase of geohazards are associated with the TGP. Within the Yangtze Project, we investigate these effects for the Xiangxi (香溪) catchment which is part of the Three Gorges Reservoir. The aim of this study is to evaluate the susceptibility for mass movement within the Xiangxi River backwater area using geographic information system (GIS). We used existing mass movements and the conditioning factors (geology, elevation, slope, curvature, land use, and land use change) for analyzing mass movement susceptibility. Mass movements and geology were mapped in the field to establish a mass movement inventory and a geological map. Land use and digital elevation model (DEM) were obtained from remote-sensing data. We determined the relation between mass movements and the conditioning factors by using the frequency ratio method and found strong relation between mass movements and both natural and human-influenced conditioning factors.

Key Words

mass movement susceptibility GIS frequency ratio Xiangxi catchment Three Gorges Reservoir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Akgun, A., Dag, S., Bulut, F., 2008. Landslide Susceptibility Mapping for a Landslide-Prone Area (Findikli, NE of Turkey) by Likelihood-Frequency Ratio and Weighted Linear Combination Models. Environmental Geology, 54(6): 1127–1143CrossRefGoogle Scholar
  2. Baxter, R. M., 1977. Environmental Effects of Dams and Impoundments. Annual Review of Ecology and Systematics, 8: 255–283CrossRefGoogle Scholar
  3. Brardinoni, F., Slaymaker, O., Hassan, M. A., 2003. Landslide Inventory in a Rugged Forested Watershed: A Comparison between Air-Photo and Field Survey Data. Geomorphology, 54(3–4): 179–196CrossRefGoogle Scholar
  4. Cruden, D. M., Varnes, D. J., 1996. Landslide Types and Processes. In: Turner, A. K., Schuster, R. L., eds., Landslides: Investigation and Mitigation. Spec. Rep. 247, Transport Research Board. National Academy Press, Washington. 36–75Google Scholar
  5. Donati, L., Turrini, M. C., 2002. An Objective Method to Rank the Importance of the Factors Predisposing to Landslides with the GIS Methodology: Application to an Area of the Apennines (Valnerina; Perugia, Italy). Engineering Geology, 63(3–4): 277–289CrossRefGoogle Scholar
  6. Ferreira, A. J. D., Coelho, C. O. A., Ritsema, C. J., et al., 2008. Soil and Water Degradation Processes in Burned Areas: Lessons Learned from a Nested Approach. Catena, 74(3): 273–285CrossRefGoogle Scholar
  7. Fourniadis, I. G., Liu, J. G., 2007. Landslides in the Wushan-Zigui Region of the Three Gorges, China. Quarterly Journal of Engineering Geology and Hydrogeology, 40: 115–122CrossRefGoogle Scholar
  8. Fourniadis, I. G., Liu, J. G., Mason, P. J., 2006. Landslide Hazard Assessment in the Three Gorges Area, China, Using ASTER Imagery: Wushan-Badong. Geomorphology, 84(1–2): 126–144Google Scholar
  9. Glade, T., 2003. Landslide Occurrence as a Response to Land Use Change: A Review of Evidence from New Zealand. Catena, 51(3–4): 297–314CrossRefGoogle Scholar
  10. Hartmann, H., 2005. Location of Xiangxi Catchment. In: Scholten, T., Rohn, J., King, L., et al., eds., Project Application in the Subject Area Land Use Change, Erosion, and Mass Movements in the Collaborative Research Project Sustainable Use of the New Eco-systems at Yangtze River, China. 36 (in German)Google Scholar
  11. He, K. Q., Li, X. R., Yan, X. Q., et al., 2008. The Landslides in the Three Gorges Reservoir Region, China and the Effects of Water Storage and Rain on Their Stability. Environmental Geology, 55(1): 55–63CrossRefGoogle Scholar
  12. Huang, B. L., Chen, X. T., 2007. Deformation Failure Mechanism of Baijiabao Landslide in Xiangxi River Valley. Chinese Journal of Geotechnical Engineering, 29(6): 938–942 (in Chinese with English Abstract)Google Scholar
  13. Jarvis, A., Reuter, H. I., Nelson, A., et al., 2008. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org
  14. Jiang, J. W., Ehret, D., Xiang, W., et al., 2010. Numerical Simulation of Qiaotou Landslide Deformation Caused by Drawdown of the Three Gorges Reservoir, China. Environmental Earth Sciences, doi: 10.1007/s12665-010-0536-0Google Scholar
  15. Kallen, D., Xiang, W., Ehret, D., et al., 2006. Landslides at Qingjiang River in the Downstream Area of Shuibuya Dam Site, China. Journal of China University of Geosciences, 17(2): 158–162CrossRefGoogle Scholar
  16. Karsli, F., Atasoy, M., Yalcin, A., et al., 2009. Effects of Land-Use Changes on Landslides in a Landslide-Prone Area (Ardesen, Rize, NE Turkey). Environmental Monitoring and Assessment, 156(1–4): 241–255CrossRefGoogle Scholar
  17. Krejcí, O., Baron, I., Bíl, M., et al., 2002. Slope Movements in the Flysch Carpathians of Eastern Czech Republic Triggered by Extreme Rainfalls in 1997: A Case Study. Physics and Chemistry of the Earth, 27(36): 1567–1576Google Scholar
  18. Lee, S., Dan, N., 2005. Probabilistic Landslide Susceptibility Mapping in the Lai Chau Province of Vietnam: Focus on the Relationship between Tectonic Fractures and Landslides. Environmental Geology, 48(6): 778–787CrossRefGoogle Scholar
  19. Lee, S., Min, K., 2001. Statistical Analysis of Landslide Susceptibility at Yongin, Korea. Environmental Geology, 40(9): 1095–1113CrossRefGoogle Scholar
  20. Lee, S., Pradhan, B., 2006. Probabilistic Landslide Hazards and Risk Mapping on Penang Island, Malaysia. J. Earth Syst. Sci., 115(6): 661–672CrossRefGoogle Scholar
  21. Lee, S., Pradhan, B., 2007. Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslides, 4(1): 33–41CrossRefGoogle Scholar
  22. Lee, S., Sambath, T., 2006. Landslide Susceptibility Mapping in the Damrei Romel Area, Cambodia Using Frequency Ratio and Logistic Regression Models. Environmental Geology, 50(6): 847–855CrossRefGoogle Scholar
  23. Lee, S., Talib, J. A., 2005. Probabilistic Landslide Susceptibility and Factor Effect Analysis. Environmental Geology, 47(7): 982–990CrossRefGoogle Scholar
  24. Liu, J. G., Mason, P. J., Clerici, N., et al., 2004. Landslide Hazard Assessment in the Three Gorges Area of the Yangtze River Using ASTER Imagery: Zigui-Badong. Geomorphology, 61(1–2): 171–187CrossRefGoogle Scholar
  25. Mantovani, F., Soeters, R., van Westen, C. J., 1996. Remote Sensing Techniques for Landslide Studies and Hazard Zonation in Europe. Geomorphology, 15(3–4): 213–225CrossRefGoogle Scholar
  26. Mather, A. E., Griffiths, J. S., Stokes, M., 2003. Anatomy of a ‘Fossil’ Landslide from the Pleistocene of SE Spain. Geomorphology, 50(1–3): 135–149CrossRefGoogle Scholar
  27. Metternicht, G., Hurni, L., Gogu, R., 2005. Remote Sensing of Landslides: An Analysis of the Potential Contribution to Geo-spatial Systems for Hazard Assessment in Moun tainous Environments. Remote Sensing of Environment, 98(2–3): 284–303CrossRefGoogle Scholar
  28. Regmi, N. R., Giardino, J. R., Vitek, J. D., 2010. Assessing Susceptibility to Landslides: Using Models to Understand Observed Changes in Slopes. Geomorphology, 122(1–2):25–38CrossRefGoogle Scholar
  29. Ruff, M., Czurda, K., 2008. Landslide Susceptibility Analysis with a Heuristic Approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94(3–4): 314–324CrossRefGoogle Scholar
  30. Ruff, M., Rohn, J., 2008. Susceptibility Analysis for Slides and Rockfall: An Example from the Northern Calcareous Alps (Vorarlberg, Austria). Environmental Geology, 55(2): 441–452CrossRefGoogle Scholar
  31. Schönbrodt, S., Ehret, D., Seeber, C., et al.. Geo-risks in the Highly Dynamic Three Gorges Reservoir Ecosystem: Interactions of Soil Erosion, Mass Movements, and Land Use. Earth Surface Processes and Landforms (Submitted)Google Scholar
  32. Seeber, C., Hartmann, H., Xiang, W., et al., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855CrossRefGoogle Scholar
  33. Talebi, A., Troch, P. A., Uijlenhoet, R., 2008. A Steady-State Analytical Slope Stability Model for Complex Hillslopes. Hydrological Processes, 22(4): 546–553CrossRefGoogle Scholar
  34. van Beek, L. P. H., van Asch, T. W. J., 2004. Regional Assessment of the Effects of Land-Use Change on Landslide Hazard by Means of Physically Based Modelling. Natural Hazards, 31(1): 289–304CrossRefGoogle Scholar
  35. van den Eeckhaut, M., Poesen, J., Verstraeten, G., et al., 2005. The Effectiveness of Hillshade Maps and Expert Knowledge in Mapping Old Deep-Seated Landslides. Geomorphology, 67(3–4): 351–363Google Scholar
  36. van Westen, C. J., 2000. The Modelling of Landslide Hazards Using GIS. Surveys in Geophysics, 21(2–3): 241–255CrossRefGoogle Scholar
  37. van Westen, C. J., Rengers, N., Soeters, R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3): 399–419CrossRefGoogle Scholar
  38. Vijith, H., Madhu, G., 2007. Application of GIS and Frequency Ratio Model in Mapping the Potential Surface Failure Sites in the Poonjar Sub-watershed of Meenachil River in Western Ghats of Kerala. Photonirvachak, 35(3): 275–285Google Scholar
  39. Vijith, H., Madhu, G., 2008. Estimating Potential Landslide Sites of an Upland Sub-watershed in Western Ghat’s of Kerala (India) through Frequency Ratio and GIS. Environmental Geology, 55(7): 1397–1405CrossRefGoogle Scholar
  40. Wang, F. W., Wang, G. H., Sassa, K., et al., 2005. Deformation Monitoring and Exploration on Shuping Landslide Induced by Impoundment of the Three Gorges Reservoir, China. Disaster Prevention Research Institute Annuals, 48(B): 405–412Google Scholar
  41. Wang, F. W., Zhang, Y. M., Huo, Z. T., et al., 2004. The July 14, 2003 Qianjiangping Landslide, Three Gorges Reservoir, China. Landslides, 1(2): 157–162CrossRefGoogle Scholar
  42. Wang, F. W., Zhang, Y. M., Huo, Z. T., et al., 2008a. Movement of the Shuping Landslide in the First Four Years after the Initial Impoundment of the Three Gorges Dam Reservoir, China. Landslides, 5(3): 321–329CrossRefGoogle Scholar
  43. Wang, F. W., Zhang, Y. M., Huo, Z. T., et al., 2008b. Mechanism for the Rapid Motion of the Qianjiangping Landslide during Reactivation by the First Impoundment of the Three Gorges Dam Reservoir, China. Landslides, 5(4): 379–386CrossRefGoogle Scholar
  44. Yilmaz, I., 2009. Landslide Susceptibility Mapping Using Frequency Ratio, Logistic Regression, Artificial Neural Networks and Their Comparison: A Case Study from Kat Landslides (Tokat-Turkey). Computers & Geosciences, 35(6): 1125–1138CrossRefGoogle Scholar
  45. Zhang, Z. J., Bai, Z. M., Mooney, W. D., et al., 2009. Crustal Structure across the Three Gorges Area of the Yangtze Platform, Central China, from Seismic Refraction/Wide-Angle Reflection Data. Tectonophysics, 475(3–4): 423–437CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dominik Ehret
    • 1
  • Joachim Rohn
    • 1
  • Christian Dumperth
    • 1
  • Susan Eckstein
    • 1
  • Stefanie Ernstberger
    • 1
  • Karel Otte
    • 1
  • René Rudolph
    • 1
  • Johannes Wiedenmann
    • 1
  • Wei Xiang (项伟)
    • 2
  • Renneng Bi (毕仁能)
    • 2
  1. 1.Department of Applied GeologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Faculty of EngineeringChina University of GeosciencesWuhanChina

Personalised recommendations