Journal of Earth Science

, Volume 21, Issue 5, pp 495–516 | Cite as

Recent advances in high pressure and temperature rheological studies

Article

Abstract

Rheological studies at high pressure and temperature using in-situ X-ray diffraction and imaging have made significant progresses in recent years, thanks to a combination of recent developments in several areas: (1) advances in synchrotron X-ray techniques, (2) advances in deformation devices and the abilities to control pressure, temperature, stress, strain and strain rates, (3) theoretical and computational advances in stress determination based on powder and single crystal diffraction, (4) theoretical and computational advances in modeling of grain-level micromechanics based on elasto-plastic and visco-plastic self-consistent formulations. In this article, we briefly introduce the experimental techniques and theoretical background for in-situ high pressure, high temperature rheological studies, and then review recent studies of rheological properties of major mantle materials. Some currently encountered issues have prompted developments in single-crystal quasi-Laue diffraction for complete stress tensor determination and textural evolution of poly-phased composites based on X-ray microtomography. Future prospects are discussed.

Key Words

rheology deformation composite synchrotron radiation high pressure and high temperature diffraction tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Balchan, A. S., Drickamer, H. G., 1961. High Pressure Electrical Resistance Cell, and Calibration Points above 100 kbars. The Review of Scientific Instruments, 32: 308–313CrossRefGoogle Scholar
  2. Burnley, P. C., Zhang, D., 2008. Interpreting In Situ X-Ray Diffraction Data from High Pressure Deformation Experiments Using Elastic-Plastic Self-consistent Models: An Example Using Quartz. Journal of Physics, Condensed Matter, 20(28): 285201. doi:10.1088/0953-8984/1020/285201CrossRefGoogle Scholar
  3. Carrez, P., Walker, A. M., Metsue, A., et al. 2008. Evidence from Numerical Modeling for 3D Spreading of [001] Screw Dislocations in Mg2SiO4 Forsterite. Philosophical Magazine, 88(16): 2477–2845CrossRefGoogle Scholar
  4. Cordier, P., Couvy, H., Merkel, S., et al., 2005. Plastic Deformation of Minerals at High Pressures: Experimental Techniques. EMU Notes in Mineralogy, 14: 339–355Google Scholar
  5. Downs, R. T., Singh, A. K., 2006. Analysis of Deviatoric Stress from Nonhydrostatic Pressure on a Single Crystal in a Diamond Anvil Cell: The Case of Monoclinic Aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 67(9–10): 1995–2000CrossRefGoogle Scholar
  6. Duffy, T. S., Hemley, R. J., Mao, H. K., 1995. Equation of State and Shear-Strength at Multimegabar Pressures: Magnesium Oxide to 227 GPa. Physical Review Letters, 74(8): 1371–1374CrossRefGoogle Scholar
  7. Durham, W. B., Goetze, C., 1977. Plastic Flow of Oriented Single Crystals of Olivine: 1. Mechanical Data. Journal of Geophysical Research, 82(36): 5737–5753CrossRefGoogle Scholar
  8. Durham, W. B., Mei, S. H., Kohlstedt, D. L., et al., 2009. New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Physics of the Earth and Planetary Interiors, 172(1–2): 67–73CrossRefGoogle Scholar
  9. Durham, W. B., Weidner, D. J., Karato, S. I., et al., 2002. New Developments in Deformation Experiments at High Pressure. In: Karato, S. I., Wenk, H. R., eds., Plastic Deformation of Minerals and Rocks, Reviews in Mineralogy. Mineralogical Society of America, Washington D.C.. 21–49Google Scholar
  10. Durnick, J., Legris, A., Cordier, P., 2005. Pressure Sensitivity of Olivine Slip Systems: First-Principle Calculations of Generalised Stacking Faults. Phys. Chem. Miner., 32(8–9): 646–654CrossRefGoogle Scholar
  11. Eshelby, J. D., 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 241: 376–396CrossRefGoogle Scholar
  12. Funamori, N., Funamori, M., Jranloz, R., et al., 1997. Broadening of X-Ray Powder Diffraction Lines under Nonhydrostatic Stress. J. Appl. Phys., 82(1): 142–146CrossRefGoogle Scholar
  13. Gasperini, P., Sabadini, R., 1990. Finite Element Modeling of Lateral Viscosity Heterogeneities and Post-Glacial Rebound. Tectonophysics, 179(1–2): 141–149CrossRefGoogle Scholar
  14. Handy, M. R., 1994. Flow Laws for Rocks Containing Two Non-linear Viscous Phases: A Phenomenological Approach. Journal of Structural Geology, 16(3): 287–301CrossRefGoogle Scholar
  15. Hazen, R. M., Downs, R. T., Prewitt, C. T., 2000. Principles of Comparative Crystal Chemistry. In: Hazen, R. M., Downs, R. T., eds., High-Temperature and High-Pressure Crystal Chemistry. Mineralogical Society of America, Washington D.C.. 1–33Google Scholar
  16. Hilairet, N., Reynard, B., Wang, Y. B., et al., 2007. High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction. Science, 318(5858): 1910–1913CrossRefGoogle Scholar
  17. Hilairet, N., Wang, Y. B., Sanehira, T., et al., 2010. Deformation of Olivine under Upper Mantle Conditions: Flow Laws and Deformation Mechanisms from In-Situ Monochromatic Difraction and Imaging. Earth and Planetary Science Letters (submitted)Google Scholar
  18. Hirth, G., Kohlstedt, D., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory, Geophysical Monograph. American Geophysical Union, Washington, D.C.. 83–105Google Scholar
  19. Holyoke, C. W., Tullis, J., 2006. Mechanisms of Weak Phase Interconnection and the Effects of Phase Strength Contrast on Fabric Development. Journal of Structural Geology, 28(4): 621–640CrossRefGoogle Scholar
  20. Hutchinson, J. W., 1970. Elastic-Plastic Behaviour of Polycrystalline Metals and Composites. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 319(1537): 247–272CrossRefGoogle Scholar
  21. Ice, G., 2008. The Future of Spatially-Resolved Polychromatic Neutron and X-Ray Microdiffraction. Metallurgical and Materials Transactions A, 39(13): 3058–3064CrossRefGoogle Scholar
  22. Irifune, T., 2009. Development of Multianvil Technqieus for Studies in Deep Earth Mineralogy. High Pressure Science and Technology, 19(1): 62–69 (in Japanese with English Abstract)CrossRefGoogle Scholar
  23. Ischia, G., Wenk, H. R., Lutterotti, L., et al., 2005. Quantitative Reitveld Texture Analysis of Zirconium from Single Synchrotron Diffraction Images. Journal of Applied Crystal lography, 38: 377–380CrossRefGoogle Scholar
  24. Jung, H., Mo, W., Green, H. W., 2009. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geosci., 2(1): 73–77CrossRefGoogle Scholar
  25. Karato, S. I., Weidner, D. J., 2008. Laboratory Studies of the Rheological Properties of Minerals under Deep-Mantle Conditions. Elements, 4: 191–196CrossRefGoogle Scholar
  26. Kawazoe, T., Karato, S. I., Otsuka, K., et al., 2009. Shear Deformation of Dry Polycrystalline Olivine under Deep Upper Mantle Conditions Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 174(1–4): 128–137CrossRefGoogle Scholar
  27. Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Pressure Generation to 25 GPa Using a Cubic Anvil Apparatus with a Multi-Anvil 6–6 Assembly. High Pressure Research, 30(1): 167–174CrossRefGoogle Scholar
  28. Lebensohn, R. A., Tomé, C. N., 1994. A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 175(1–2): 71–82Google Scholar
  29. Lesher, C. E., Wang, Y. B., Gaudio, S., et al., 2009. Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 174(1–4): 292–301CrossRefGoogle Scholar
  30. Li, L., Long, H. B., Raterron, P., et al., 2006a. Plastic Flow of Pyrope at Mantle Pressure and Temperature. American Mineralogist, 91: 517–525CrossRefGoogle Scholar
  31. Li, L., Weidner, D., Raterron, P., et al., 2006b. Deformation of Olivine at Mantle Pressure Using the D-DIA. European Journal of Mineralogy, 18: 7–19CrossRefGoogle Scholar
  32. Li, L., Raterron, P., Weidner, D., et al., 2003. Olivine Flow Mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors, 138(2): 113–129CrossRefGoogle Scholar
  33. Lonardelli, I., Wenk, H. R., Lutterotti, L., et al., 2005. Texture Analysis from Synchrotron Diffraction Images with the Rietveld Method: Dinosaur Tendon and Salmon Scale. Journal of Synchrotron Radiation, 12(3): 354–360CrossRefGoogle Scholar
  34. Lutterotti, L., Matthies, S., Wenk, H. R., 1999. MAUD: A Friendly Java Program for Materials Analysis Using Diffraction. Int. U. Crystallogr. Comm. Powder Diffraction Newsletter, 21: 14–15Google Scholar
  35. Matthies, S., Vinel, G. W., 1982. On the Reproduction of the Orientation Distribution Function of Textured Samples from Reduced Pole Figures Using the Conception of a Conditional Ghost Correction. Physica Status Solidi B-Basic Research, 112(2): K111–K114CrossRefGoogle Scholar
  36. Merkel, S., Tomé, C., Wenk, H. R., 2009. Modeling Analysis of the Influence of Plasticity on High Pressure Deformation of hcp-Co. Physical Review B, 79(6): 064110, doi:10.1103/PhysRevB.79.064110CrossRefGoogle Scholar
  37. Merkel, S., Wenk, H., Shu, J. F., et al., 2002. Deformation of Polycrystalline MgO at Pressures of the Lower Mantle. J. Geophys. Res., 107(B11)Google Scholar
  38. Merkel, S., Yagi, T., 2006. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. Journal of Physics and Chemistry of Solids, 67(9–10): 2119–2131CrossRefGoogle Scholar
  39. Milne, G. A., Mitrovica, J. X., Forte, A. M., 1998. The Sensitivity of Glacial Isostatic Adjustment Predictions to a Low-Viscosity Layer at the Base of the Upper Mantle. Earth and Planetary Science Letters, 154(1–4): 265–278CrossRefGoogle Scholar
  40. Miyagi, L., Nishiyama, N., Wang, Y. B., et al., 2008. Deformation and Texture Development in CaIrO3 Post-Perovskite Phase up to 6 GPa and 1 300 K. Earth and Planetary Science Letters, 268(3–4): 515–525CrossRefGoogle Scholar
  41. Nishihara, Y., 2008. Recent Technical Developments of High-Pressure Deformation Experiments. The Review of High Pressure Science and Technology, 18: 223–229CrossRefGoogle Scholar
  42. Nishihara, Y., Tinker, D., Kawazoe, T., et al., 2008. Plastic Deformation of Wadsleyite and Olivine at High-Pressure and High-Temperature Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 170(3–4): 156–169CrossRefGoogle Scholar
  43. Nishiyama, N., Wang, Y. B., Rivers, M. L., et al., 2007. Rheology of Epsilon-Iron up to 19 GPa and 600 K in the D-DIA. Geophys. Res. Lett., 35(23): L23304CrossRefGoogle Scholar
  44. Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Research, 28(3): 307–314CrossRefGoogle Scholar
  45. Nishiyama, N., Wang, Y. B., Uchida, T., et al., 2005. Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite. Geophys. Res. Lett., 32(4): L04307, doi: 10.1029/2004GL022141.CrossRefGoogle Scholar
  46. Nye, J. F., 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press, OxfordGoogle Scholar
  47. Paterson, M. S., Olgaard, D. L., 2000. Rock Deformation Tests to Large Shear Strains in Torsion. Journal of Structural Geology, 22(9): 1341–1358CrossRefGoogle Scholar
  48. Raterron, P., Amiguet, E., Chen, J. H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 172(1–2): 74–83CrossRefGoogle Scholar
  49. Rivers, M. L., Sutton, S. R., Eng, P., 1999. Geoscience Applications of X-Ray Computed Microtomography. SPIE, 3772: 78–86CrossRefGoogle Scholar
  50. Singh, A. K., 1993. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys., 74(9): 5920–5920CrossRefGoogle Scholar
  51. Takeda, Y. T., Griera, A., 2006. Rheological and Kinematical Responses to Flow of Two-Phase Rocks. Tectonophysics, 427(1–4): 95–113CrossRefGoogle Scholar
  52. Turner, P. A., Tome, C. N., 1994. A Study of Residual-Stresses in Zircaloy-2 with Rod Texture. Acta Metallurgica et Materialia, 42(12): 4143–4153CrossRefGoogle Scholar
  53. Uchida, T., Funamori, N., Yagi, T., 1996. Lattice Strains in Crystals under Uniaxial Stress Field. J. Appl. Phys., 80(2): 739–746CrossRefGoogle Scholar
  54. Uchida, T., Wang, Y. B., Rivers, M. L., et al., 2004. Yield Strength and Strain Hardening of MgO up to 8 GPa Measured in the Deformation-DIA with Monochromatic X-Ray Diffraction. Earth and Planetary Science Letters, 226(1–2): 117–126CrossRefGoogle Scholar
  55. Uchida, T., Wang, Y. B., Rivers, M., et al., 2005. Stress and Strain Measurements of Polycrystalline Materials under Controlled Deformation at High Pressure Using Monochromatic Synchrotron Radiation. In: Chen, J. H., Wang, Y. B., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 137–165CrossRefGoogle Scholar
  56. Wang, Y. B., Dera, P. K., Hilairet, N., et al., 2009. High-Pressure Deformation of Single-Crystal Garnet in the D-DIA Using Quasi Laue Diffraction. EOS Trans. AGU, Fall Meet. Suppl. Abstract, 90(52): MR31B–1649Google Scholar
  57. Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 74(6): 3002–3011CrossRefGoogle Scholar
  58. Wang, Y. B., Hilairet, N., 2009. Rheology at High Pressure and High Temperature. High-Pressure Crystallography: Advanced New Armor Materials and Protection from Explosives. NATO, Erice, SicilyGoogle Scholar
  59. Wang, Y. B., Lesher, C., Fiquet, G., et al., 2010. In-Situ High-P, T, X-Ray Microtomographic Imaging during Large Deformation: A New Technique for Studying Mechanical Behavior of Multi-phase Composites. Geosphere, (Submitted)Google Scholar
  60. Wang, Y. B., Uchida, T., Westferro, F., et al., 2005. High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 76(7): 073709, doi: 10.1063/1.1979477.CrossRefGoogle Scholar
  61. Weidner, D. J., Li, L., Davis, M., et al., 2004. Effect of Plasticity on Elastic Modulus Measurements. Geophysical Research Letters, 31(6), doi:10.1029/2003GL019090Google Scholar
  62. Weidner, D. J., Vaughan, M. T., Wang, L. P., et al., 2010. Precise Stress Measurements with White Synchrotron X Rays. Rev. Sci. Instrum., 81(1): 013903CrossRefGoogle Scholar
  63. Wenk, H. R., Ischia, G., Nishiyama, N., et al., 2005. Texture Development and Deformation Mechanisms in Ringwoodite. Physics of the Earth and Planetary Interiors, 152(3): 191–199CrossRefGoogle Scholar
  64. Wenk, H. R., Lonardelli, I., Pehi, J., et al., 2004. In Situ Observation of Texture Development in Olivine, Ringwoodite, Magnesiowustite and Silicate Perovskite at High Pressure. Earth and Planetary Science Letters, 226(3–4): 507–519CrossRefGoogle Scholar
  65. Wenk, H. R., Matthies, S., Donovan, J., et al., 1998. BEARTEX, a Windows-Based Program System for Quantitative Texture Analysis. J. Appl. Crystallogr., 31: 262–269CrossRefGoogle Scholar
  66. Wenk, H. R., Matthies, S., Hemley, R. J., et al., 2000. The Plastic Deformation of Iron at Pressures of the Earth’s Inner Core. Nature, 405(6790): 1044–1047CrossRefGoogle Scholar
  67. Xu, Y. S., Nishihara, Y., Karato, S. I., 2005. Development of a Rotational Drickamer Apparatus for Large-Strain Deformation Experiments at Deep Earth Conditions. In: Chen, J. H., Wang, Y. B., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 167–182CrossRefGoogle Scholar
  68. Yamazaki, D., Karato, S. I., 2001. High Pressure Rotational Deformation Apparatus to 15 GPa. Rev. Sci. Instrum., 72(11): 4207–4211CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Advanced Radiation SourcesThe University of ChicagoChicagoUSA

Personalised recommendations