Journal of Earth Science

, Volume 21, Issue 5, pp 517–522 | Cite as

Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D-DIA apparatus

  • Takaaki Kawazoe
  • Tomohiro Ohuchi
  • Norimasa Nishiyama
  • Yu Nishihara
  • Tetsuo Irifune
Article

Abstract

A deformation experiment of ringwoodite with a strain of 9% was achieved at 20 GPa and 1 700 K and at a strain rate of 3×10−5 s−1 using a deformation-DIA (D-DIA) apparatus and a multi-anvil 6-6 (MA 6-6) assembly. The crystallographic orientations of the deformed sample were successfully analyzed by the electron backscatter diffraction (EBSD) method, although any notable lattice-preferred orientation (LPO) was not observed presumably due to the insufficient strain in the present experiment. In this study, the deformation experiment on ringwoodite succeeded at P-T conditions consistent with the lower part of the mantle transition zone and at a controlled strain rate for the first time. The present study extended the pressure range of deformation experiments in the D-DIA apparatus from 16 GPa in our earlier study to 20 GPa at 1 700 K. The successful extension of the pressure range demonstrates potential importance of the D-DIA apparatus in studying rheological properties of minerals under the P-T conditions of the whole mantle transition zone.

Key Words

ringwoodite mantle transition zone rheology viscosity mantle dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Karato, S. I., Dupas-Bruzek, C., Rubie, D. C., 1998. Plastic Deformation of Silicate Spinel under the Transition Zone Conditions of the Earth’s Mantle. Nature, 395(6699): 266–269CrossRefGoogle Scholar
  2. Kavner, A., Duffy, T. S., 2001. Strength and Elasticity of Ringwoodite at Upper Mantle Pressures. Geophys. Res. Lett., 28(14): 2691–2694CrossRefGoogle Scholar
  3. Kawazoe, T., Nishiyama, N., Nishihara, N., et al., 2010. Deformation Experiment at P-T Conditions of the Mantle Transition Zone Using D-DIA Apparatus. Phys. Earth Planet. Inter. (in Press)Google Scholar
  4. Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Pressure Generation to 25 GPa Using a Cubic Anvil Apparatus with a Multi-anvil 6-6 Assembly. High Press. Res., 30(1): 167–174CrossRefGoogle Scholar
  5. Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Press. Res., 28(3): 307–314CrossRefGoogle Scholar
  6. Nishiyama, N., Wang, Y. B., Uchida, T., et al., 2005. Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite. Geophys. Res. Lett., 32(4)Google Scholar
  7. Peltier, W. R., 1998. Postglacial Variation in the Level of the Sea: Implications for Climate Dynamics and Solid-Earth Geophysics. Rev. Geophys., 36(4): 603–689CrossRefGoogle Scholar
  8. Torii, Y., Yoshioka, S., 2007. Physical Conditions for Producing Slab Stagnation: Constraints of the Clapeyron Slope, Mantle Viscosity, Trench Retreat, and Dip Angles. Tectonophysics, 445(3–4): 200–209CrossRefGoogle Scholar
  9. Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 74(6): 3002–3011CrossRefGoogle Scholar
  10. Wenk, H. R., Ischia, G., Nishiyama, N., et al., 2005. Texture Development and Deformation Mechanisms in Ringwoodite. Phys. Earth Planet. Inter., 152(3): 191–199CrossRefGoogle Scholar
  11. Xu, Y. Q., Weidner, D. J., Chen, J. H., et al., 2003. Flow-Law for Ringwoodite at Subduction Zone Conditions. Phys. Earth Planet. Inter., 136(1–2): 3–9CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Takaaki Kawazoe
    • 1
  • Tomohiro Ohuchi
    • 1
  • Norimasa Nishiyama
    • 1
  • Yu Nishihara
    • 2
  • Tetsuo Irifune
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityEhimeJapan
  2. 2.Ehime UniversityEhimeJapan

Personalised recommendations