Journal of Earth Science

, Volume 21, Issue 5, pp 523–531 | Cite as

Technical development of simple shear deformation experiments using a deformation-DIA apparatus

  • Tomohiro Ohuchi
  • Takaaki Kawazoe
  • Norimasa Nishiyama
  • Nishihara Yu
  • Tetsuo Irifune
Article

Abstract

Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous olivine aggregates were conducted under upper mantle conditions (pressures of 5.2–7.6 GPa and temperatures of 1 473–1 573 K), and sample deformation with a shear strain of γ=0.8−1.2 was successfully achieved at a shear strain rate of 4.0×10−5−7.5×10−5 s−1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.

Key Words

simple shear deformation deformation-DIA MA 6-6 upper mantle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Ayers, J. C., Brenan, J. B., Watson, E. B., et al., 1992. A New Capsule Technique for Hydrothermal Experiments Using the Piston-Cylinder Apparatus. Am. Mineral., 77: 1080–1086Google Scholar
  2. Bose, K., Ganguly, J., 1995. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500–1 200 °C and Retrieved Thermochemical Properties. Am. Mineral., 80(3–4): 231–238Google Scholar
  3. Couvy, H., Frost, D. J., Heidelbach, F., et al., 2004. Shear Deformation Experiments of Forsterite at 11 GPa-1 400 °c in the Multianvil Apparatus. Eur. J. Mineral., 16: 877–889CrossRefGoogle Scholar
  4. Frost, D. J., 2003. The Structure and Sharpness of (Mg,Fe)2SiO4 Phase Transformations in the Transition Zone. Earth Planet. Sci. Lett., 216(3): 313–328CrossRefGoogle Scholar
  5. Jung, H., Karato, S. I., 2001a. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1462CrossRefGoogle Scholar
  6. Jung, H., Karato, S. I., 2001b. Effects of Water on Dynamically Recrystallized Grain-Size of Olivine. J. Struct. Geol., 23(9): 1337–1344CrossRefGoogle Scholar
  7. Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophys., 421(1–2): 1–22CrossRefGoogle Scholar
  8. Karato, S. I., Rubie, D. C., 1997. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res., 102(B9): 20111–20122CrossRefGoogle Scholar
  9. Karato, S. I., Jung, H., 2003. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Philos. Mag., 83(3): 401–414CrossRefGoogle Scholar
  10. Karato, S. I., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci., 36: 59–95CrossRefGoogle Scholar
  11. Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Deformation Experiment at P-T Conditions of the Mantle Transition Zone Using D-DIA Apparatus. Phys. Earth Planet. Inter., doi:10.1016/j.pepi.2010.07.004Google Scholar
  12. Kohlstedt, D. L., Goetze, C., Durham, W. B., 1977. The Physics and Chemistry of Minerals and Rocks. Wiley, New York. 35–49Google Scholar
  13. Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β, γ Phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol., 123(4): 345–357CrossRefGoogle Scholar
  14. Li, L., Weidner, D., Raterron, P., et al., 2006. Deformation of Olivine at Mantle Pressure Using the D-DIA. Eur. J. Mineral., 18: 7–19CrossRefGoogle Scholar
  15. Litasov, K. D., Shatskiy, A. F., Pal-Yanov, Y. N., et al., 2009. Hydrogen Incorporation into Forsterite in Mg2SiO4-K2Mg(CO3)2-H2O and Mg2SiO4-H2O-C at 7.5–14.0 GPa. Russ. Geol. Geophys., 50(12): 1129–1138CrossRefGoogle Scholar
  16. Mackwell, S. J., Kohlstedt, D. L., Paterson, M. S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res., 90: 11319–11333CrossRefGoogle Scholar
  17. Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-Anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Res., 28(3): 307–314CrossRefGoogle Scholar
  18. Ohuchi, T., Karato, S., Fujino, K., 2010. Strength of Single Crystal of Orthopyroxene under Lithospheric Conditions. Contrib. Mineral. Petrol., doi:10.1007/s00410-010-0574-3Google Scholar
  19. Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral., 105(1): 20–29Google Scholar
  20. Raterron, P., Chen, J. H., Li, L., et al., 2007. Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature. Am. Mineral., 92: 1436–1445CrossRefGoogle Scholar
  21. Raterron, P., Amiguet, E., Chen, J. H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Phys. Earth Planet. Inter., 172(1–2): 74–83CrossRefGoogle Scholar
  22. Walte, N., Heidelbach, F., Miyajima, N., et al., 2007. Texture Development and TEM Analysis of Deformed CaIrO3: Implications for the D” Layer at the Core-Mantle Boundary. Geophys. Res. Lett., 34(8): L08306, doi:10.1029/2007GL029407CrossRefGoogle Scholar
  23. Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 74(6): 3002–3011CrossRefGoogle Scholar
  24. Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In Situ Observation of the Olivine-Spinel Phase Transformation in Fe2SiO4 Using Synchrotron Radiation. J. Geophys. Res., 92(B7): 6207–6213CrossRefGoogle Scholar
  25. Zhang, J., Li, B., Utsumi, W., et al., 1996. In Situ X-Ray Observations of the Coesite-Stishovite Transition: Reversed Phase Boundary and Kinetics. Phys. Chem. Min., 23(1): 1–10CrossRefGoogle Scholar
  26. Zhang, S. Q., Karato, S. I., 1995. Lattice Preferred Orientation of Olivine Aggregates in Simple Shear. Nature, 375(6534): 774–777CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tomohiro Ohuchi
    • 1
  • Takaaki Kawazoe
    • 1
  • Norimasa Nishiyama
    • 1
  • Nishihara Yu
    • 1
    • 2
  • Tetsuo Irifune
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Senior Research Fellow CenterEhime UniversityMatsuyamaJapan

Personalised recommendations