Advertisement

The Journal of Physiological Sciences

, Volume 69, Issue 3, pp 503–511 | Cite as

Effects of chronic Porphyromonas gingivalis lipopolysaccharide infusion on skeletal muscles in mice

  • Naoya Kawamura
  • Yoshiki Ohnuki
  • Ichiro Matsuo
  • Kenji Suita
  • Misao Ishikawa
  • Yasumasa Mototani
  • Kouichi Shiozawa
  • Aiko Ito
  • Yuka Yagisawa
  • Yoshio Hayakawa
  • Megumi Nariyama
  • Daisuke Umeki
  • Yuko Ujiie
  • Kazuhiro Gomi
  • Satoshi OkumuraEmail author
Original Paper
  • 72 Downloads

Abstract

Periodontitis, which is caused by various oral organisms, predominantly affects adults, and is one of the main causes of tooth loss, as well as leading to progression of numerous systemic diseases. However, its relationship to sarcopenia (aging-associated degenerative loss of skeletal muscle mass and function) remains unclear. The aim of this study was to investigate the effects of Porphyromonas gingivalis lipopolysaccharide (PG-LPS) on skeletal muscle in mice, and to establish the underlying mechanisms. Mice (C57BL/6) were injected with PG-LPS (0.8 mg/kg/day) for 4 weeks. This treatment significantly decreased the weight of fast-twitch skeletal muscles (masseter and tibialis anterior muscles), but not that of slow-twitch skeletal muscle (soleus muscle). The area of fibrosis was significantly increased in masseter muscle, but remained unchanged in the other two muscles. The number of apoptotic myocytes was significantly increased (approximately eightfold) in masseter muscle. These data suggest that persistent subclinical exposure to PG-LPS might reduce the size of fast-twitch skeletal muscle, but not slow-twitch skeletal muscle. Masseter muscle appears to be especially susceptible to the adverse effects of PG-LPS, because muscle remodeling (muscle fibrosis and myocyte apoptosis) was induced solely in masseter muscle. Thus, periodontitis might be one of the major causes of oral sarcopenia.

Keywords

Lipopolysaccharide Periodontitis Sarcopenia Apoptosis Fibrosis Signal transduction 

Notes

Acknowledgements

This study was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants (17K12067 to YO, 15K18973 to K.Suita, 17K11977 to MN, 17K17342 to DU and 18K06862, 16H05300 to SO); the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1511018 to SO); an Academic Contribution from Pfizer Japan (AC160910, AC1500818, AC170780 to SO); Mitsui Life Social Welfare Foundation (SO), and Research Promotion Grants from the Society for Tsurumi University School of Dental Medicine (29002, 27010 to IA, 28006 to NK, 28006 to YY, 29007 to K. Suita).

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interests.

References

  1. 1.
    Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 3:17038CrossRefGoogle Scholar
  2. 2.
    Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ (2012) Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 91:914–920CrossRefGoogle Scholar
  3. 3.
    Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99:427–511CrossRefGoogle Scholar
  4. 4.
    Frost RA, Nystrom GJ, Lang CH (2002) Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Physiol Regul Integr Comp Physiol 283:R698–R709CrossRefGoogle Scholar
  5. 5.
    Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pederson BK (1999) A high plasma concentration of TNF-α is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54:M357–M364CrossRefGoogle Scholar
  6. 6.
    Maggio M, Guralnik JM, Longo DL, Ferrucci L (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584CrossRefGoogle Scholar
  7. 7.
    Graves DT, Cochran D (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 74:391–401CrossRefGoogle Scholar
  8. 8.
    Sanchez P, Everett B, Salamonson Y, Ajwani S, George A (2017) Oral healthcare and cardiovascular disease: a scoping review of current strategies and implications for nurses. J Cardiovasc Nurs 32:E10–E20CrossRefGoogle Scholar
  9. 9.
    Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W (2018) Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation 15:37CrossRefGoogle Scholar
  10. 10.
    Deleon-Pennell KY, de Castro Bras LE, Lindsey ML (2013) Circulating Porphyromonas gingivalis lipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiol Rep 1:e00079CrossRefGoogle Scholar
  11. 11.
    Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589:5485–5501CrossRefGoogle Scholar
  12. 12.
    Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K (2012) No change in myonuclear number during muscle unloading and reloading. J Appl Physiol 113:290–296CrossRefGoogle Scholar
  13. 13.
    Kiliaridis S, Engstrom C, Thilander B (1988) Histochemical analysis of masticatory muscle in the growing rat after prolonged alteration in the consistency of the diet. Arch Oral Biol 33:187–193CrossRefGoogle Scholar
  14. 14.
    Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA 100:9986–9990CrossRefGoogle Scholar
  15. 15.
    Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani R, Suita K, Kawakami Y, Hamaguchi S, Abe T, Kiyonari H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y (2014) Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 124:2785–2801CrossRefGoogle Scholar
  16. 16.
    Yu H, He Y, Zhang X, Peng Z, Yang Y, Zhu R, Bai J, Tian Y, Li X, Chen W, Fang D, Wang R (2011) The rat IgGFcγBP and Muc2 C-terminal domains and TFF3 in two intestinal mucus layers bind together by covalent interaction. PLoS One 6:e20334CrossRefGoogle Scholar
  17. 17.
    Cheema N, Herbst A, McKenzie D, Aiken JM (2015) Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell 14:1085–1093CrossRefGoogle Scholar
  18. 18.
    Mahdy MAA (2018) Skeletal muscle fibrosis: an overview. Cell Tissue Res.  https://doi.org/10.1007/s00441-018-2955-2 Google Scholar
  19. 19.
    Cheng YC, Chen LM, Chang MH, Chen WK, Tsai FJ, Tsai CH, Lai TY, Kuo WW, Huang CY, Liu CJ (2009) Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells. Mol Cell Biochem 325:15–23CrossRefGoogle Scholar
  20. 20.
    Yoshimoto N, Togo S, Kubota T, Kamimukai N, Saito S, Nagao Y, Endo I, Sekido H, Nagashima Y, Shimada H (2005) Role of transforming growth factor-β1 (TGF-β1) in endotoxin-induced hepatic failure after extensive hepatectomy in rats. J Endotoxin Res 11:33–39CrossRefGoogle Scholar
  21. 21.
    Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127:3770–3783CrossRefGoogle Scholar
  22. 22.
    Pavone LM, Rea S, Trapani F, De Pasquale V, Tafuri S, Papparella S, Oet Paciello (2012) Role of serotonergic system in the pathogenesis of fibrosis in canine idiopathic inflammatory myopathies. Neuromuscul Disord 22:549–557CrossRefGoogle Scholar
  23. 23.
    Huang RL, Yuan Y, Zou GM, Liu G, Tu J, Li Q (2014) LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-κB and BMP/Smad signaling. Stem Cells Dev 23:277–289CrossRefGoogle Scholar
  24. 24.
    Dattaroy D, Seth RK, Sarkar S, Kimono D, Albadrani M, Chandrashekaran V, Hasson FA, Singh UP, Fan D, Nagarkatti M, Diehl AM, Chatterjee S (2018) Sparstolonin B (SsnB) attenuates liver fibrosis via a parallel conjugate pathway involving P53-P21 axis, TGF-β signaling and focal adhesion that is TLR4 dependent. Eur J Pharmacol 841:33–48CrossRefGoogle Scholar
  25. 25.
    Grumati P, Bonaldo P (2012) Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cells 1:325–345CrossRefGoogle Scholar
  26. 26.
    Mialet-Perez J, Vindis C (2017) Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem 61:721–732CrossRefGoogle Scholar
  27. 27.
    Sato T, Ito Y, Nagasawa T (2015) Dietary l-lysine suppresses autophagic proteolysis and stimulates Akt/mTOR signaling in the skeletal muscle of rats fed a low-protein diet. J Agric Food Chem 63:8192–8198CrossRefGoogle Scholar
  28. 28.
    Zhao WT, Yang M, Wu HM, Yang L, Zhang XM, Huang Y (2018) Systematic review and meta-analysis of the association between sarcopenia and dysphagia. J Nutr Health Aging 22:1003–1009CrossRefGoogle Scholar
  29. 29.
    Kato S, Ekuni D, Kawakami S, Mude AH, Morita M, Minagi S (2018) Relationship between severity of periodontitis and masseter muscle activity during waking and sleeping hours. Arch Oral Biol 90:13–18CrossRefGoogle Scholar
  30. 30.
    Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199CrossRefGoogle Scholar
  31. 31.
    Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764CrossRefGoogle Scholar
  32. 32.
    Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698CrossRefGoogle Scholar
  33. 33.
    Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331Google Scholar
  34. 34.
    Nichenko AS, Southern WM, Atuan M, Luan J, Peissig KB, Foltz SJ, Beedle AM, Warren GL, Call JA (2016) Mitochondrial maintenance via autophagy contributes to functional skeletal muscle regeneration and remodeling. Am J Physiol Cell Physiol 311:C190–C200CrossRefGoogle Scholar
  35. 35.
    Yokota J, Ogawa Y, Yamanaka S, Takahashi Y, Fujita H, Yamaguchi N, Onoue N, Ishizuka T, Shinozaki T, Kohzuki M (2016) Cognitive dysfunction and malnutrition are independent predictors of dysphagia in patients with acute exacerbation of congestive heart failure. PLoS One 11:e0167326CrossRefGoogle Scholar
  36. 36.
    Kaysar M, Augustine T, Jim L, Benjamin C (2008) Predictors of length of stay between the young and aged in hospitalized community-acquired pneumonia patients. Geriatr Gerontol Int 8:227–233CrossRefGoogle Scholar
  37. 37.
    Altman KW, Yu GP, Schaefer SD (2010) Consequence of dysphagia in the hospitalized patient: impact on prognosis and hospital resources. Arch Otolaryngol Head Neck Surg 136:784–789CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Naoya Kawamura
    • 1
    • 2
  • Yoshiki Ohnuki
    • 1
  • Ichiro Matsuo
    • 1
    • 2
  • Kenji Suita
    • 1
  • Misao Ishikawa
    • 3
  • Yasumasa Mototani
    • 1
  • Kouichi Shiozawa
    • 1
  • Aiko Ito
    • 1
    • 4
  • Yuka Yagisawa
    • 1
    • 4
  • Yoshio Hayakawa
    • 1
    • 5
  • Megumi Nariyama
    • 6
  • Daisuke Umeki
    • 4
  • Yuko Ujiie
    • 2
  • Kazuhiro Gomi
    • 2
  • Satoshi Okumura
    • 1
    Email author
  1. 1.Department of PhysiologyTsurumi University School of Dental MedicineYokohamaJapan
  2. 2.Department of PeriodontologyTsurumi University School of Dental MedicineYokohamaJapan
  3. 3.Department of Oral AnatomyTsurumi University School of Dental MedicineYokohamaJapan
  4. 4.Department of OrthodonticsTsurumi University School of Dental MedicineYokohamaJapan
  5. 5.Department of Dental AnesthesiologyTsurumi University School of Dental MedicineYokohamaJapan
  6. 6.Department of Pediatric DentistryTsurumi University School of Dental MedicineYokohamaJapan

Personalised recommendations