The Journal of Physiological Sciences

, Volume 69, Issue 3, pp 489–502 | Cite as

Suramin protects hepatocytes from LPS-induced apoptosis by regulating mitochondrial stress and inactivating the JNK-Mst1 signaling pathway

  • Aizhong Wang
  • Jiali Wang
  • Jun Wu
  • Xiaojun Deng
  • Yan ZouEmail author
Original Paper


An uncontrolled inflammatory response has been implicated in the progression of acute liver failure through poorly understood mechanisms. The aim of our study was to investigate whether suramin attenuates inflammation-mediated hepatocyte apoptosis by modulating mitochondrial homeostasis. Primary hepatocytes were isolated from mice and treated with LPS in vitro in the presence or absence of suramin. Western blotting, immunofluorescence staining, and ELISAs were used to evaluate the mitochondrial stress. The LPS treatment caused hepatocyte death via apoptosis. Interestingly, suramin supplementation attenuated LPS-mediated hepatocyte death by reducing Mst1 expression; the overexpression of Mst1 abolished the anti-apoptotic effects of suramin on LPS-treated hepatocytes. At the molecular level, suramin treatment repressed mitochondrial oxidative stress, sustained mitochondrial dynamics and blocked the caspase-9-mediated mitochondrial apoptosis pathway; these effects of suramin were achieved by reversing Mst1 expression. Furthermore, our study found that suramin modulated Mst1 expression via the JNK signaling pathway. Activation of JNK prevented the suramin-mediated Mst1 downregulation and concomitantly increased hepatocyte apoptosis and mitochondrial dysfunction. Taken together, our results confirmed the anti-apoptotic and anti-inflammatory effects of suramin on LPS-challenged hepatocytes. Suramin sustained hepatocyte viability and attenuated mitochondrial stress via repressing the JNK-Mst1 signaling pathway.


Suramin Inflammation Mitochondria Hepatocyte death Mst1 JNK pathway 


Author contributions

AZW, JLW, and JW made substantial contributions to the concept and design of the present study, XJD and YZ contributed to the performance of experiments, data analysis and interpretation, and manuscript writing.


This work was supported by Shanghai University of Medicine & Health Sciences Seed Project (SFP-18-22-14-011).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary material

12576_2019_666_MOESM1_ESM.docx (151 kb)
Supplementary material 1 (DOCX 151 kb)


  1. 1.
    Bikfalvi A (2017) History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 20:463–478CrossRefGoogle Scholar
  2. 2.
    Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587CrossRefGoogle Scholar
  3. 3.
    Szabo G, Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12:387–400CrossRefGoogle Scholar
  4. 4.
    Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243CrossRefGoogle Scholar
  5. 5.
    Bak DH, Na J, Choi MJ, Lee BC, Oh CT, Kim JY, Han HJ, Kim MJ, Kim TH, Kim BJ (2018) Antiapoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro. Int J Mol Med 42:2569–2583Google Scholar
  6. 6.
    Bird TG, Muller M, Boulter L, Vincent DF, Ridgway RA, Lopez-Guadamillas E, Lu WY, Jamieson T, Govaere O, Campbell AD, Ferreira-Gonzalez S, Cole AM, Hay T, Simpson KJ, Clark W, Hedley A, Clarke M, Gentaz P, Nixon C, Bryce S, Kiourtis C, Sprangers J, Nibbs RJB, Van Rooijen N, Bartholin L, Mcgreal SR, Apte U, Barry ST, Iredale JP, Clarke AR, Serrano M, Roskams TA, Sansom OJ, Forbes SJ (2018) TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med. 10:eaan1230CrossRefGoogle Scholar
  7. 7.
    Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res 64:e12450CrossRefGoogle Scholar
  8. 8.
    Karwi QG, Bice JS, Baxter GF (2017) Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Res Cardiol 113:6CrossRefGoogle Scholar
  9. 9.
    Chen LY, Renn TY, Liao WC, Mai FD, Ho YJ, Hsiao G, Lee AW, Chang HM (2017) Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 63:e12417CrossRefGoogle Scholar
  10. 10.
    Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY (2017) Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/beta-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 12:505–521CrossRefGoogle Scholar
  11. 11.
    Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514CrossRefGoogle Scholar
  12. 12.
    Souza LEB, Beckenkamp LR, Sobral LM, Fantacini DMC, Melo FUF, Borges JS, Leopoldino AM, Kashima S, Covas DT (2018) Pre-culture in endothelial growth medium enhances the angiogenic properties of adipose-derived stem/stromal cells. Angiogenesis 21:15–22CrossRefGoogle Scholar
  13. 13.
    Xiong C, Liu N, Fang L, Zhuang S, Yan H (2014) Suramin inhibits the development and progression of peritoneal fibrosis. J Pharmacol Exp Ther 351:373–382CrossRefGoogle Scholar
  14. 14.
    Korrapati MC, Howell LA, Shaner BE, Megyesi JK, Siskind LJ, Schnellmann RG (2013) Suramin: a potential therapy for diabetic nephropathy. PLoS One 8:e73655CrossRefGoogle Scholar
  15. 15.
    He S, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Schnellmann RG, Zhong Z (2013) Suramin decreases injury and improves regeneration of ethanol-induced steatotic partial liver grafts. J Pharmacol Exp Ther 344:417–425CrossRefGoogle Scholar
  16. 16.
    Reddy KRK, Dasari C, Duscharla D, Supriya B, Ram NS, Surekha MV, Kumar JM, Ummanni R (2018) Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 21:79–94CrossRefGoogle Scholar
  17. 17.
    Loforese G, Malinka T, Keogh A, Baier F, Simillion C, Montani M, Halazonetis TD, Candinas D, Stroka D (2017) Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 9:46–60CrossRefGoogle Scholar
  18. 18.
    Geng C, Zhang Y, Gao Y, Tao W, Zhang H, Liu X, Fang F, Chang Y (2016) Mst1 regulates hepatic lipid metabolism by inhibiting Sirt1 ubiquitination in mice. Biochem Biophys Res Commun 471:444–449CrossRefGoogle Scholar
  19. 19.
    Ding M, Ning J, Feng N, Li Z, Liu Z, Wang Y, Wang Y, Li X, Huo C, Jia X, Xu R, Fu F, Wang X, Pei J (2018) Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res 64:e12447CrossRefGoogle Scholar
  20. 20.
    Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y (2018) BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21:599–615CrossRefGoogle Scholar
  21. 21.
    Van Beijnum JR, Nowak-Sliwinska P, Van Berkel M, Wong TJ, Griffioen AW (2017) A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7). Angiogenesis 20:641–654CrossRefGoogle Scholar
  22. 22.
    Guers JJ, Zhang J, Campbell SC, Oydanich M, Vatner DE, Vatner SF (2017) Disruption of adenylyl cyclase type 5 mimics exercise training. Basic Res Cardiol 112:59CrossRefGoogle Scholar
  23. 23.
    Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y (2018) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113:23CrossRefGoogle Scholar
  24. 24.
    Choi GH, Lee HY, Back K (2017) Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J Pineal Res 63:e12412CrossRefGoogle Scholar
  25. 25.
    Blackburn NJR, Vulesevic B, Mcneill B, Cimenci CE, Ahmadi A, Gonzalez-Gomez M, Ostojic A, Zhong Z, Brownlee M, Beisswenger PJ, Milne RW, Suuronen EJ (2017) Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction. Basic Res Cardiol 112:57CrossRefGoogle Scholar
  26. 26.
    Zhou H, Wang J, Zhu P, Hu S, Ren J (2018) Ripk3 regulates cardiac microvascular reperfusion injury: the role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal 45:12–22CrossRefGoogle Scholar
  27. 27.
    Peterson YK, Nasarre P, Bonilla IV, Hilliard E, Samples J, Morinelli TA, Hill EG, Klauber-Demore N (2017) Frizzled-5: a high affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis 20:615–628CrossRefGoogle Scholar
  28. 28.
    Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:62CrossRefGoogle Scholar
  29. 29.
    Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G (2017) STAT3 as a common signal of ischemic conditioning: a lesson on “rigor and reproducibility” in preclinical studies on cardioprotection. Basic Res Cardiol 113:3CrossRefGoogle Scholar
  30. 30.
    Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J (2019) BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 234:5056–5069CrossRefGoogle Scholar
  31. 31.
    Schluter KD, Wolf A, Weber M, Schreckenberg R, Schulz R (2017) Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Res Cardiol 112:63CrossRefGoogle Scholar
  32. 32.
    Tenreiro MM, Correia ML, Brito MA (2017) Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 20:443–462CrossRefGoogle Scholar
  33. 33.
    Landry NM, Cohen S, Dixon IMC (2017) Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Res Cardiol 113:1CrossRefGoogle Scholar
  34. 34.
    Zhou H, Yue Y, Wang J, Ma Q, Chen Y (2018) Melatonin therapy for diabetic cardiomyopathy: a mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell Signal 47:88–100CrossRefGoogle Scholar
  35. 35.
    Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25:1080–1093CrossRefGoogle Scholar
  36. 36.
    Cortese-Krott MM, Mergia E, Kramer CM, Luckstadt W, Yang J, Wolff G, Panknin C, Bracht T, Sitek B, Pernow J, Stasch JP, Feelisch M, Koesling D, Kelm M (2018) Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease. Redox Biol 14:328–337CrossRefGoogle Scholar
  37. 37.
    Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y (2017) Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc 6:e005328Google Scholar
  38. 38.
    Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63:e12413CrossRefGoogle Scholar
  39. 39.
    Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63:e12438CrossRefGoogle Scholar
  40. 40.
    Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H, Chen Y (2018) Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 16:157–168CrossRefGoogle Scholar
  41. 41.
    Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507CrossRefGoogle Scholar
  42. 42.
    Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018) Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res 64:e12471CrossRefGoogle Scholar
  43. 43.
    Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65:e12503CrossRefGoogle Scholar
  44. 44.
    Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H (2018) Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 14:59–71CrossRefGoogle Scholar
  45. 45.
    Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346CrossRefGoogle Scholar
  46. 46.
    Wang X, Song Q (2018) Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 23:21CrossRefGoogle Scholar
  47. 47.
    Li Q, Qi F, Meng X, Zhu C, Gao Y (2018) Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biol Toxicol 34:263–277CrossRefGoogle Scholar
  48. 48.
    Wang P, Hu Y, Yao D, Li Y (2018) Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cell Physiol Biochem 49:2163–2173CrossRefGoogle Scholar
  49. 49.
    Casadonte L, Verhoeff BJ, Piek JJ, Vanbavel E, Spaan JAE, Siebes M (2017) Influence of increased heart rate and aortic pressure on resting indices of functional coronary stenosis severity. Basic Res Cardiol 112:61CrossRefGoogle Scholar
  50. 50.
    Zhao Q, Ye M, Yang W, Wang M, Li M, Gu C, Zhao L, Zhang Z, Han W, Fan W, Meng Y (2018) Effect of Mst1 on endometriosis apoptosis and migration: role of Drp1-related mitochondrial fission and parkin-required mitophagy. Cell Physiol Biochem 45:1172–1190CrossRefGoogle Scholar
  51. 51.
    Kurz AR, Pruenster M, Rohwedder I, Ramadass M, Schafer K, Harrison U, Gouveia G, Nussbaum C, Immler R, Wiessner JR, Margraf A, Lim DS, Walzog B, Dietzel S, Moser M, Klein C, Vestweber D, Haas R, Catz SD, Sperandio M (2016) MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane. J Clin Invest 126:4125–4139CrossRefGoogle Scholar
  52. 52.
    Sajib S, Zahra FT, Lionakis MS, German NA, Mikelis CM (2018) Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis 21:1–14CrossRefGoogle Scholar
  53. 53.
    Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251CrossRefGoogle Scholar
  54. 54.
    Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L (2017) Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res Cardiol 112:68CrossRefGoogle Scholar
  55. 55.
    Fernandez Vazquez G, Reiter RJ, Agil A (2018) Melatonin increases brown adipose tissue mass and function in Zucker diabetic fatty rats: implications for obesity control. J Pineal Res 64:e12472CrossRefGoogle Scholar
  56. 56.
    Cheng Z, Zhang M, Hu J, Lin J, Feng X, Wang S, Wang T, Gao E, Wang H, Sun D (2019) Cardiac-specific Mst1 deficiency inhibits ROS-mediated JNK signalling to alleviate Ang II-induced cardiomyocyte apoptosis. J Cell Mol Med 23:543–555CrossRefGoogle Scholar
  57. 57.
    Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, Zielonka J, Dwinell MB (2018) A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol 14:316–327CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Aizhong Wang
    • 1
  • Jiali Wang
    • 2
  • Jun Wu
    • 2
  • Xiaojun Deng
    • 2
  • Yan Zou
    • 2
    Email author
  1. 1.Department of AnesthesiologyShanghai Sixth People’s Hospital affiliated to Shanghai University of Medicine and Health SciencesPudongChina
  2. 2.Department of Intensive Care MedicineShanghai Sixth People’s Hospital affiliated to Shanghai University of Medicine and Health SciencesPudongChina

Personalised recommendations