The Journal of Physiological Sciences

, Volume 69, Issue 3, pp 477–488 | Cite as

Xanthoceraside prevented synaptic loss and reversed learning-memory deficits in APP/PS1 transgenic mice

  • Ge Jin
  • Lin Zhu
  • Peng Liu
  • Qian Xu
  • Yue Qi
  • Xiaoyu Zhou
  • Jikai Xu
  • Xuefei Ji
  • Tianyan Chi
  • Libo ZouEmail author
Original Paper


Xanthoceraside, a novel triterpenoid saponin, has been found to attenuate learning and memory impairments in AD animal models. However, whether xanthoceraside has a positive effect on synaptic morphology remains unclear. Herein, we evaluated the effects of xanthoceraside on learning and memory impairments and the abnormalities of synaptic structure in APP/PS1 transgenic mice. The behavioral experiments demonstrated that xanthoceraside attenuated the imaginal memory and spatial learning impairments, and improved social interaction. Transmission electron microscopy and Golgi staining showed that xanthoceraside ameliorated synapse morphology abnormalities and dendritic spine density deficits, respectively. Western-blot analysis identified that xanthoceraside increased the expression of SYP and PSD95, activated BDNF/TrkB/MAPK/ERK and PI3K/Akt signaling pathways, meanwhile decreased the expression of RhoA, ROCK and Snk, increased the levels of SPAR, and activated the BDNF/TrkB/cofilin signaling pathway. Taken together, our study indicated that xanthoceraside improved cognitive function and protected both synaptic morphology and dendritic spine in APP/PS1 transgenic mice, which might be related in part to its activation in the BDNF/TrkB pathway.


Xanthoceraside Learning and memory Synaptic structure BDNF TrkB 


Amyloid-β peptide


Intracellular neurofibrillary tangles


Brain-derived neurotrophic factor


Tropomyosin receptor kinase B


Mitogen-activated protein kinases


Extracellular-signal related kinase


Phosphatidylinositol 3 kinase


Ras homolog gene A


Rho-associated coiled-coil forming protein kinase 2


Serum inducible kinase


Spine-associated Rap-specific GTPase-activating protein




Post-synaptic density protein


Authors’ contribution

G. Jin and L. Zhu conceived the experiments and contributed to research data; P. Liu, Q. Xu and Y.Q. contributed technical assistance; X. Zou and J. Xu participated in raising animals; and X. Ji and T. Chi revised the manuscript. L. Zou revised the manuscript and supervised the analyses.


This work was supported by the Research Fund for National Natural Science Foundation (No. 81373992) of China, the Career Development Program for Young Teachers in Shenyang Pharmaceutical University (No. ZQN2015028) and the Doctoral Scientific Research Foundation of Liaoning Province (No. 51120424).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Animal studies were performed in accordance with the P.R. China legislation on the use and the care of laboratory animals and with the guidelines established by the Institute for Experimental Animals at Shenyang Pharmaceutical University. The protocols were approved by the Committee on the Ethics of Animal Experiments of the Shenyang Pharmaceutical University (SYPU-IACUC-S20140317-04).


  1. 1.
    Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG (2005) Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease. Psychopharmacology 181(1):145–152CrossRefGoogle Scholar
  2. 2.
    Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88(17):7552–7556CrossRefGoogle Scholar
  3. 3.
    Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, Gonzalez-DeWhitt PA, Greenberg BD, Gambetti P, Perry G (1992) Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Pathol 140(4):947–958Google Scholar
  4. 4.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917CrossRefGoogle Scholar
  5. 5.
    Garcia P, Youssef I, Utvik JK, Florent-Bechard S, Barthelemy V, Malaplate-Armand C, Kriem B, Stenger C, Koziel V, Olivier JL et al (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30(22):7516–7527CrossRefGoogle Scholar
  6. 6.
    Price KA, Varghese M, Sowa A, Yuk F, Brautigam H, Ehrlich ME, Dickstein DL (2014) Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-beta oligomers and no plaque pathology. Mol Neurodegener 9:41CrossRefGoogle Scholar
  7. 7.
    Raskin J, Cummings J, Hardy J, Schuh K, Dean RA (2015) Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr Alzheimer Res 12(8):712–722CrossRefGoogle Scholar
  8. 8.
    Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23):4515–4529CrossRefGoogle Scholar
  9. 9.
    Strittmatter S, Kostylev M, Kaufman AC, Haas L, Heiss JK, Gunther EC, Nygaard HB (2014) A synaptotoxic pathway from Aβ oligomer to prion protein to mGluR5 to F kinase in Alzheimer’s disease. Neurobiol Aging 35:S21CrossRefGoogle Scholar
  10. 10.
    Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT et al (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2(3):271–276CrossRefGoogle Scholar
  11. 11.
    Pooler AM, Noble W, Hanger DP (2014) A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76(Pt A):1–8CrossRefGoogle Scholar
  12. 12.
    Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114(11):1624–1634CrossRefGoogle Scholar
  13. 13.
    Bonardi C, Pardon MC, Armstrong P (2016) Deficits in object-in-place but not relative recency performance in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: implications for object recognition. Behav Brain Res 313:71–81CrossRefGoogle Scholar
  14. 14.
    Li N, Liu GT (2010) The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 31(3):265–272CrossRefGoogle Scholar
  15. 15.
    Hassanpour M, Rezabakhsh A, Rahbarghazi R, Nourazarian A, Nouri M, Avci CB, Ghaderi S, Alidadyani N, Bagca BG, Bagheri HS (2017) Functional convergence of Akt protein with VEGFR-1 in human endothelial progenitor cells exposed to sera from patient with type 2 diabetes mellitus. Microvasc Res 114:101–113CrossRefGoogle Scholar
  16. 16.
    Wang X, Fu X, Zhao S, Zhang H, Shao L, Li G, Fan C (2017) Antiangiogenic properties of caudatin in vitro and in vivo by suppression of VEGFVEGFR2AKT/FAK signal axis. Mol Med Rep 16(6):8937–8943CrossRefGoogle Scholar
  17. 17.
    Wang WM, Xu Y, Wang YH, Sun HX, Sun YF, He YF, Zhu QF, Hu B, Zhang X, Xia JL et al (2017) HOXB7 promotes tumor progression via bFGF-induced activation of MAPK/ERK pathway and indicated poor prognosis in hepatocellular carcinoma. Oncotarget 8(29):47121–47135Google Scholar
  18. 18.
    Xiong S, Xu Y, Ma M, Wang H, Wei F, Gu Q, Xu X (2017) Neuroprotective effects of a novel peptide, FK18, under oxygen-glucose deprivation in SH-SY5Y cells and retinal ischemia in rats via the Akt pathway. Neurochem Int 108:78–90CrossRefGoogle Scholar
  19. 19.
    Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B (2012) Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA 109(39):15924–15929CrossRefGoogle Scholar
  20. 20.
    Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59(1):201–220CrossRefGoogle Scholar
  21. 21.
    Khelfaoui M, Denis C, van Galen E, de Bock F, Schmitt A, Houbron C, Morice E, Giros B, Ramakers G, Fagni L et al (2007) Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J Neurosci 27(35):9439–9450CrossRefGoogle Scholar
  22. 22.
    Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13(5):454–469CrossRefGoogle Scholar
  23. 23.
    Wu LX, Sun CK, Zhang YM, Fan M, Xu J, Ma H, Zhang J (2007) Involvement of the Snk-SPAR pathway in glutamate-induced excitotoxicity in cultured hippocampal neurons. Brain Res 1168:38–45CrossRefGoogle Scholar
  24. 24.
    Bennett M (2009) Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Aust N Z J Psychiatry 43(8):711–721CrossRefGoogle Scholar
  25. 25.
    Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99CrossRefGoogle Scholar
  26. 26.
    Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416CrossRefGoogle Scholar
  27. 27.
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93(6):1412–1421CrossRefGoogle Scholar
  28. 28.
    Arancibia S, Silhol M, Mouliere F, Meffre J, Hollinger I, Maurice T, Tapia-Arancibia L (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 31(3):316–326CrossRefGoogle Scholar
  29. 29.
    Chi TY, Wang LH, Qu C, Yang BZ, Ji XF, Wang Y, Okuyama T, Yoshihito O, Zou LB (2009) Protective effects of xanthoceraside on learning and memory impairment induced by Abeta(25–35) in mice. J Asian Nat Prod Res 11(12):1019–1027CrossRefGoogle Scholar
  30. 30.
    Lu P, Mamiya T, Lu L, Mouri A, Ikejima T, Kim HC, Zou LB, Nabeshima T (2012) Xanthoceraside attenuates amyloid beta peptide(2)(5)(−)(3)(5)-induced learning and memory impairments in mice. Psychopharmacology 219(1):181–190CrossRefGoogle Scholar
  31. 31.
    Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231(2):345–356CrossRefGoogle Scholar
  32. 32.
    Qi Y, Zou LB, Wang LH, Jin G, Pan JJ, Chi TY, Ji XF (2013) Xanthoceraside inhibits pro-inflammatory cytokine expression in Abeta25-35/IFN-gamma-stimulated microglia through the TLR2 receptor, MyD88, nuclear factor-kappaB, and mitogen-activated protein kinase signaling pathways. J Pharmacol Sci 122(4):305–317CrossRefGoogle Scholar
  33. 33.
    Zhou L, Gao Q, Nie M, Gu JL, Hao W, Wang L, Cao JM (2016) Degeneration and energy shortage in the suprachiasmatic nucleus underlies the circadian rhythm disturbance in ApoE−/- mice: implications for Alzheimer’s disease. Sci Rep 6:36335CrossRefGoogle Scholar
  34. 34.
    Li Y, Xu J, Xu P, Song S, Liu P, Chi T, Ji X, Jin G, Qiu S, Hou Y et al (2016) Xanthoceras sorbifolia extracts ameliorate dendritic spine deficiency and cognitive decline via upregulation of BDNF expression in a rat model of Alzheimer’s disease. Neurosci Lett 629:208–214CrossRefGoogle Scholar
  35. 35.
    Baloyannis SJ (2015) Staining neurons with Golgi techniques in degenerative diseases of the brain. Neural Regen Res 10(5):693–695CrossRefGoogle Scholar
  36. 36.
    Zhu L, Chi T, Zhao X, Yang L, Song S, Lu Q, Ji X, Liu P, Wang L, Zou L (2018) Xanthoceraside modulates neurogenesis to ameliorate cognitive impairment in APP/PS1 transgenic mice. J Physiol Sci 68(5):555–565CrossRefGoogle Scholar
  37. 37.
    Liu P, Zou L, Jiao Q, Chi T, Ji X, Qi Y, Xu Q, Wang L (2013) Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats. Neurosci Lett 543:115–120CrossRefGoogle Scholar
  38. 38.
    Pietropaolo S, Delage P, Lebreton F, Crusio WE, Cho YH (2012) Early development of social deficits in APP and APP-PS1 mice. Neurobiol Aging 33(5):1002 e1017–1002 e1027CrossRefGoogle Scholar
  39. 39.
    Nenov MN, Laezza F, Haidacher SJ, Zhao Y, Sadygov RG, Starkey JM, Spratt H, Luxon BA, Dineley KT, Denner L (2014) Cognitive enhancing treatment with a PPARgamma agonist normalizes dentate granule cell presynaptic function in Tg2576 APP mice. J Neurosci 34(3):1028–1036CrossRefGoogle Scholar
  40. 40.
    Liang C, Tan S, Huang Q, Lin J, Lu Z, Lin X (2015) Pratensein ameliorates beta-amyloid-induced cognitive impairment in rats via reducing oxidative damage and restoring synapse and BDNF levels. Neurosci Lett 592:48–53CrossRefGoogle Scholar
  41. 41.
    Jin G, Wang LH, Ji XF, Chi TY, Qi Y, Jiao Q, Xu Q, Zhou XY, Zhang R, Zou LB (2014) Xanthoceraside rescues learning and memory deficits through attenuating beta-amyloid deposition and tau hyperphosphorylation in APP mice. Neurosci Lett 573:58–63CrossRefGoogle Scholar
  42. 42.
    Zhu L, Yang L, Zhao X, Liu D, Guo X, Liu P, Chi T, Ji X, Zou L (2018) Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice. Psychopharmacology 235(1):337–349CrossRefGoogle Scholar
  43. 43.
    Kaushik V, Smith ST, Mikobi E, Raji MA (2018) Acetylcholinesterase inhibitors: beneficial effects on comorbidities in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 33(2):73–85CrossRefGoogle Scholar
  44. 44.
    Ding N, Jiang J, Lu M, Hu J, Xu Y, Liu X, Li Z (2017) Manual acupuncture suppresses the expression of proinflammatory proteins associated with the NLRP3 inflammasome in the hippocampus of SAMP8 mice. Evid Based Complement Alternat Med 2017:3435891Google Scholar
  45. 45.
    Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ (2014) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179CrossRefGoogle Scholar
  46. 46.
    Chai JX, Li HH, Wang YY, Chai Q, He WX, Zhou YM, Hu XD, Wang ZH (2016) Effect of diallyl disulfide on learning and memory abilities and hippocampal synapses in mouse models of Alzheimer’s disease. Nan Fang Yi Ke Da Xue Xue Bao 36(10):1417–1422Google Scholar
  47. 47.
    Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20(17):6587–6593CrossRefGoogle Scholar
  48. 48.
    Hoppe JB, Haag M, Whalley BJ, Salbego CG, Cimarosti H (2013) Curcumin protects organotypic hippocampal slice cultures from Abeta1-42-induced synaptic toxicity. Toxicol In Vitro 27(8):2325–2330CrossRefGoogle Scholar
  49. 49.
    Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7(11):1181–1183CrossRefGoogle Scholar
  50. 50.
    Dong H, Martin MV, Chambers S, Csernansky JG (2007) Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. J Comp Neurol 500(2):311–321CrossRefGoogle Scholar
  51. 51.
    Tucsek Z, Noa Valcarcel-Ares M, Tarantini S, Yabluchanskiy A, Fulop G, Gautam T, Orock A, Csiszar A, Deak F, Ungvari Z (2017) Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. Geroscience 39:385–406CrossRefGoogle Scholar
  52. 52.
    Bruel-Jungerman E, Veyrac A, Dufour F, Horwood J, Laroche S, Davis S (2009) Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE 4(11):e7901CrossRefGoogle Scholar
  53. 53.
    Morroni F, Sita G, Tarozzi A, Rimondini R, Hrelia P (2016) Early effects of Abeta1-42 oligomers injection in mice: involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res 314:106–115CrossRefGoogle Scholar
  54. 54.
    Uranga RM, Katz S, Salvador GA (2013) Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 288(27):19773–19784CrossRefGoogle Scholar
  55. 55.
    On C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653CrossRefGoogle Scholar
  56. 56.
    Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RC, Salbego CG (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144CrossRefGoogle Scholar
  57. 57.
    Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21(3):823–831CrossRefGoogle Scholar
  58. 58.
    Anderton BH, Callahan L, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C (1998) Dendritic changes in Alzheimer’s disease and factors that may underlie these changes. Prog Neurobiol 55(6):595–609CrossRefGoogle Scholar
  59. 59.
    Chai GS, Wang YY, Zhu D, Yasheng A, Zhao P (2017) Activation of beta2-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. Neurosci Lett 636:158–164CrossRefGoogle Scholar
  60. 60.
    Ma QL, Yang F, Frautschy SA, Cole GM (2012) PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. Cell Logist 2(2):117–125CrossRefGoogle Scholar
  61. 61.
    Zhou F, Xie J, Zhang S, Yin G, Gao Y, Zhang Y, Bo D, Li Z, Liu S, Feng C et al (2018) Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway. Ecotoxicol Environ Saf 163:674–684CrossRefGoogle Scholar
  62. 62.
    Bamburg JR, Bernstein BW, Davis RC, Flynn KC, Goldsbury C, Jensen JR, Maloney MT, Marsden IT, Minamide LS, Pak CW et al (2010) ADF/Cofilin–actin rods in neurodegenerative diseases. Curr Alzheimer Res 7(3):241–250CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan 2019

Authors and Affiliations

  1. 1.Department of Pharmacology, Life Science and Biopharmaceutics SchoolShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.Shenyang Medical CollegeShenyangPeople’s Republic of China

Personalised recommendations