Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo
Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input–output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.
Keywords
Optogenetics Ca2+ imaging Two-photon microscopy Self-organization Column Reciprocal inhibitionNotes
Acknowledgements
We thank K. Fukunaga for the generous gift of rabbit pan CaMKII antiserum and B. Bell for language assistance. This work was supported by a Grant-in-Aid for Scientific Research (No. 25250001 to HY), a Grant-in-Aid for Scientific Research on Innovative Areas (Adaptive Circuit Shift: No. 15H01413 to HY; Comprehensive Brain Science Network; Platforms for Advanced Technologies and Research Resources: No. 16H06276 to HB) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan: http://www.jsps.go.jp/english/e-grants/grants01.html as well as JST, Strategic International Collaborative Research Program, SICORP (to HY): http://www.jst.go.jp/inter/english/sicorp/index.html and CREST (JPMJCR1656 to AY).
Author contributions
KK contributed to conceiving, designing and performing the experiments. KK and HY contributed to data analysis. MI, SC, HB, AY and TI contributed by providing reagents, materials, and analysis tools. KK and HY contributed to data interpretation and manuscript writing. All authors approved the final version of the manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflicts of interest.
Statement on the welfare of animals
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.
Supplementary material
References
- 1.Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory coding. Nature 503:51–58. https://doi.org/10.1038/nature12654 CrossRefGoogle Scholar
- 2.Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18:530–546. https://doi.org/10.1038/nrn.2017.85 CrossRefGoogle Scholar
- 3.Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct. 212:3–17. https://doi.org/10.1007/s00429-007-0144-2 CrossRefGoogle Scholar
- 4.Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154. https://doi.org/10.1113/jphysiol.1962.sp006837 CrossRefGoogle Scholar
- 5.Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59. https://doi.org/10.1098/rspb.1977.0085 CrossRefGoogle Scholar
- 6.Miller KD, Keller JB, Stryker MP (1989) Ocular dominance column development: analysis and simulation. Science 245:605–615. https://doi.org/10.1126/science.2762813 CrossRefGoogle Scholar
- 7.Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303:1678–1681. https://doi.org/10.1126/science.1091031 CrossRefGoogle Scholar
- 8.Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72:231–243. https://doi.org/10.1016/j.neuron.2011.09.027 CrossRefGoogle Scholar
- 9.Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383. https://doi.org/10.1038/nature11312 CrossRefGoogle Scholar
- 10.Kim K, Kim JH, Song YH, Lee SH (2017) Functional dissection of inhibitory microcircuits in the visual cortex. Neurosci Res 116:70–76. https://doi.org/10.1016/j.neures.2016.09.003 CrossRefGoogle Scholar
- 11.Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807. https://doi.org/10.1038/nrn1519 CrossRefGoogle Scholar
- 12.Kubota Y, Karube F, Nomura M, Kawaguchi Y (2016) The diversity of cortical inhibitory synapses. Front Neural Circuits. 10:27. https://doi.org/10.3389/fncir.2016.00027 CrossRefGoogle Scholar
- 13.Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé JV, Magalhães BR, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez JR, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492. https://doi.org/10.1016/j.cell.2015.09.029 CrossRefGoogle Scholar
- 14.Reid RC (2012) From functional architecture to functional connectomics. Neuron 75:209–217. https://doi.org/10.1016/j.neuron.2012.06.031 CrossRefGoogle Scholar
- 15.Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A (2016) The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 6:29480. https://doi.org/10.1038/srep29480 CrossRefGoogle Scholar
- 16.Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, Kano M, Okuno H, Ohki K, Bito H (2013) Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 10:889–895. https://doi.org/10.1038/nmeth.2559 CrossRefGoogle Scholar
- 17.Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. https://doi.org/10.1038/nature10360 CrossRefGoogle Scholar
- 18.Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12:64–70. https://doi.org/10.1038/nmeth.3185 CrossRefGoogle Scholar
- 19.Nagai T, Horikawa K, Saito K, Matsuda T (2014) Genetically encoded Ca2+ indicators; expanded affinity range, color hue and compatibility with optogenetics. Front Mol Neurosci 7:90. https://doi.org/10.3389/fnmol.2014.00090 CrossRefGoogle Scholar
- 20.Antic SD, Empson RM, Knöpfel T (2016) Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 116:135–152. https://doi.org/10.1152/jn.00226.2016 CrossRefGoogle Scholar
- 21.Storace D, Sepehri Rad M, Kang B, Cohen LB, Hughes T, Baker BJ (2016) Toward better genetically encoded sensors of membrane potential. Trends Neurosci 39:277–289. https://doi.org/10.1016/j.tins.2016.02.005 CrossRefGoogle Scholar
- 22.Sepehri Rad M, Choi Y, Cohen LB, Baker BJ, Zhong S, Storace DA, Braubach OR (2017) Voltage and calcium imaging of brain activity. Biophys J 113:2160–2167. https://doi.org/10.1016/j.bpj.2017.09.040 CrossRefGoogle Scholar
- 23.Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. https://doi.org/10.1038/nn1525 CrossRefGoogle Scholar
- 24.Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94. https://doi.org/10.1016/j.neures.2005.10.009 CrossRefGoogle Scholar
- 25.Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/j.neuron.2011.06.004 CrossRefGoogle Scholar
- 26.Yawo H, Asano T, Sakai S, Ishizuka T (2013) Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 55:474–490. https://doi.org/10.1111/dgd.12053 CrossRefGoogle Scholar
- 27.Oertner TG, Helmchen F, de Lecea L, Beck H, Konnerth A, Kaupp B, Knöpfel T, Yawo H, Häusser M (2013) Optogenetic analysis of mammalian neural circuits. In: Hegemann P, Sigrist S (eds) Optogenetics, Dahlem Workshop Reports. De Gruyter, Berlin, pp 109–126Google Scholar
- 28.Yawo H, Egawa R, Hososhima S, Wen L (2015) General description: future prospects of optogenetics. In: Kandori H, Yawo H, Koizumi A (eds) Optogenetics: light-sensing proteins and their applications. Springer, Tokyo, pp 111–132CrossRefGoogle Scholar
- 29.Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156. https://doi.org/10.1088/1741-2560/4/3/S02 CrossRefGoogle Scholar
- 30.Packer AM, Russell LE, Dalgleish HW, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146. https://doi.org/10.1038/nmeth.3217 CrossRefGoogle Scholar
- 31.Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R (2016) Imprinting and recalling cortical ensembles. Science 353:691–694. https://doi.org/10.1126/science.aaf7560 CrossRefGoogle Scholar
- 32.Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945. https://doi.org/10.1073/pnas.1936192100 CrossRefGoogle Scholar
- 33.Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A. 106:12317–12322. https://doi.org/10.1073/pnas.0905852106 CrossRefGoogle Scholar
- 34.Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814. https://doi.org/10.1016/j.bpj.2008.11.034 CrossRefGoogle Scholar
- 35.Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY, Emiliani V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854. https://doi.org/10.1038/nmeth.1505 CrossRefGoogle Scholar
- 36.Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34. https://doi.org/10.1038/nmeth.f.325 CrossRefGoogle Scholar
- 37.Chaigneau E, Ronzitti E, Gajowa MA, Soler-Llavina GJ, Tanese D, Brureau AY, Papagiakoumou E, Zeng H, Emiliani V (2016) Two-photon holographic stimulation of ReaChR. Front Cell Neurosci 10:234. https://doi.org/10.3389/fncel.2016.00234 CrossRefGoogle Scholar
- 38.Ronzitti E, Conti R, Zampini V, Tanese D, Foust AJ, Klapoetke N, Boyden ES, Papagiakoumou E, Emiliani V (2017) Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos. J Neurosci 37:10679–10689. https://doi.org/10.1523/JNEUROSCI.1246-17.2017 CrossRefGoogle Scholar
- 39.Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wölfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913. https://doi.org/10.1016/j.neuron.2013.07.052 CrossRefGoogle Scholar
- 40.Hososhima S, Yuasa H, Ishizuka T, Hoque MR, Yamashita T, Yamanaka A, Sugano E, Tomita H, Yawo H (2015) Near-infrared (NIR) up-conversion optogenetics. Sci Rep 5:16533. https://doi.org/10.1038/srep16533 CrossRefGoogle Scholar
- 41.Sakai S, Ueno K, Ishizuka T, Yawo H (2013) Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector. Neurosci Res 75:59–64. https://doi.org/10.1016/j.neures.2012.03.009 CrossRefGoogle Scholar
- 42.Favre-Bulle IA, Preece D, Nieminen TA, Heap LA, Scott EK, Rubinsztein-Dunlop H (2015) Scattering of sculpted light in intact brain tissue, with implications for optogenetics. Sci Rep 5:11501. https://doi.org/10.1038/srep11501 CrossRefGoogle Scholar
- 43.Roy A, Osik JJ, Ritter NJ, Wang S, Shaw JT, Fiser J, Van Hooser SD (2016) Optogenetic spatial and temporal control of cortical circuits on a columnar scale. J Neurophysiol 115:1043–1062. https://doi.org/10.1152/jn.00960.2015 CrossRefGoogle Scholar
- 44.Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, Chen W, Ni X, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci USA 114:2042–2047. https://doi.org/10.1073/pnas.1616255114 CrossRefGoogle Scholar
- 45.Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234. https://doi.org/10.1038/nn.2247 CrossRefGoogle Scholar
- 46.Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278. https://doi.org/10.1021/bi901634p CrossRefGoogle Scholar
- 47.Hososhima S, Sakai S, Ishizuka T, Yawo H (2015) Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins. PLoS One 10:e0119558. https://doi.org/10.1371/journal.pone.0119558 CrossRefGoogle Scholar
- 48.Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722CrossRefGoogle Scholar
- 49.Maruoka H, Kubota K, Kurokawa R, Tsuruno S, Hosoya T (2011) Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. J Neurosci 31:18522–18542. https://doi.org/10.1523/JNEUROSCI.3117-11.2011 CrossRefGoogle Scholar
- 50.Maruoka H, Nakagawa N, Tsuruno S, Sakai S, Yoneda T, Hosoya T (2017) Lattice system of functionally distinct cell types in the neocortex. Science 358:610–615. https://doi.org/10.1126/science.aam6125 CrossRefGoogle Scholar
- 51.Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873. https://doi.org/10.1038/nature03252 CrossRefGoogle Scholar
- 52.Oberlaender M, Boudewijns ZS, Kleele T, Mansvelder HD, Sakmann B, de Kock CP (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4193. https://doi.org/10.1073/pnas.1100647108 CrossRefGoogle Scholar
- 53.Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, Mrsic-Flogel TD (2013) The emergence of functional microcircuits in visual cortex. Nature 496:96–100. https://doi.org/10.1038/nature12015 CrossRefGoogle Scholar
- 54.Ishikawa AW, Komatsu Y, Yoshimura Y (2014) Experience-dependent emergence of fine-scale networks in visual cortex. J Neurosci 34:12576–12586. https://doi.org/10.1523/JNEUROSCI.1346-14.2014 CrossRefGoogle Scholar
- 55.Narayanan RT, Udvary D, Oberlaender M (2017) Cell type-specific structural organization of the six layers in rat barrel cortex. Front Neuroanat 11:91. https://doi.org/10.3389/fnana.2017.00091 CrossRefGoogle Scholar
- 56.Feldmeyer D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6:24. https://doi.org/10.3389/fnana.2012.00024 CrossRefGoogle Scholar
- 57.Naka A, Adesnik H (2016) Inhibitory circuits in cortical layer 5. Front Neural Circuits 10:35. https://doi.org/10.3389/fncir.2016.00035 CrossRefGoogle Scholar
- 58.Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115. https://doi.org/10.1016/j.neures.2006.02.008 CrossRefGoogle Scholar
- 59.Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437. https://doi.org/10.1038/nrn2151 CrossRefGoogle Scholar
- 60.Le Bé JV, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17:2204–2213. https://doi.org/10.1093/cercor/bhl127 CrossRefGoogle Scholar
- 61.Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136. https://doi.org/10.1038/nature07658 CrossRefGoogle Scholar
- 62.Sato TR, Svoboda K (2010) The functional properties of barrel cortex neurons projecting to the primary motor cortex. J Neurosci 30:4256–4260. https://doi.org/10.1523/JNEUROSCI.3774-09.2010 CrossRefGoogle Scholar
- 63.Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405. https://doi.org/10.1523/JNEUROSCI.0252-06.2006 CrossRefGoogle Scholar
- 64.Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701. https://doi.org/10.1016/S0306-4522(97)00685-4 CrossRefGoogle Scholar
- 65.Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278. https://doi.org/10.1126/science.287.5451.273 CrossRefGoogle Scholar
- 66.Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, Markram H (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561:65–90. https://doi.org/10.1113/jphysiol.2004.073353 CrossRefGoogle Scholar
- 67.Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53(5):735–746. https://doi.org/10.1016/j.neuron.2007.02.012 CrossRefGoogle Scholar
- 68.Bush P, Sejnowski T (1996) Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. J Comput Neurosci 3:91–110 PMID:8840227 CrossRefGoogle Scholar
- 69.Bush PC, Mainen ZF (2015) Columnar architecture improves noise robustness in a model cortical network. PLoS ONE 10:e0119072. https://doi.org/10.1371/journal.pone.0119072 CrossRefGoogle Scholar
- 70.Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 29:10533–10540. https://doi.org/10.1523/JNEUROSCI.2219-09.2009 CrossRefGoogle Scholar