The Journal of Physiological Sciences

, Volume 68, Issue 6, pp 759–767 | Cite as

Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats

  • Kimiko Masuda
  • Hiroki Takanari
  • Masaki Morishima
  • FangFang Ma
  • Yan Wang
  • Naohiko Takahashi
  • Katsushige OnoEmail author
Original Paper


Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (IKs), whereas IKs was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-IKs possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.


Testosterone Electrocardiogram QT interval Potassium channel Kv7.1 





Torsades de pointes


Corrected QT intervals


Correlated JT interval


Voltage-gated potassium channel


Inwardly rectifying potassium channel


Potassium voltage-gated channel subfamily Q member 1


Anomalous inwardly rectifying potassium current


Transient outward potassium currents


Rapidly activating delayed rectifier potassium currents


Slowly activating delayed rectifier potassium current




cAMP response element binding protein


Specificity protein 1


Sources of funding

This work was supported in part by JSPS KAKENHI number 25460292 (K.O.) from the Japan Society for the Promotion of Science, Tokyo.

Compliance with ethical standards

Conflict of interest

All authors have declared that no conflict of interest exists.

Supplementary material

12576_2017_590_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2133 kb)


  1. 1.
    Roden DM, Spooner PM (1999) Inherited long QT syndromes: a paradigm for understanding arrhythmogenesis. J Cardiovasc Electrophysiol 10:1664–1683CrossRefGoogle Scholar
  2. 2.
    Tamargo J (2000) Drug-induced torsade de pointes: from molecular biology to bedside. Jpn J Pharmacol 83:1–19CrossRefGoogle Scholar
  3. 3.
    Itoh H, Dochi K, Shimizu W, Denjoy I, Ohno S, Aiba T et al (2015) A common mutation of long QT syndrome type 1 in Japan. Circ J 79:2026–2030CrossRefGoogle Scholar
  4. 4.
    Sumitomo N (2016) Clinical features of long QT syndrome in children. Circ J 80:598–600CrossRefGoogle Scholar
  5. 5.
    Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH (1993) Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270:2590–2597CrossRefGoogle Scholar
  6. 6.
    Lehmann MH, Timothy KW, Frankovich D, Fromm BS, Keating M, Locati EH et al (1997) Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J Am Coll Cardiol 29:93–99CrossRefGoogle Scholar
  7. 7.
    Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R et al (1992) Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 8:690–695PubMedGoogle Scholar
  8. 8.
    Argenziano M, Tiscornia G, Moretta R, Casal L, Potilinski C, Amorena C, Gras EG (2017) Arrhythmogenic effect of androgens on the rat heart. J Physiol Sci 67:217–225CrossRefGoogle Scholar
  9. 9.
    Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ, Valverde E et al (2000) Sex differences on the electrocardiographic pattern of cardiac repolarization: possible role of testosterone. Am Heart J 140:678–683CrossRefGoogle Scholar
  10. 10.
    Wang Y, Morishima M, Zheng M, Uchino T, Mannen K, Takahashi A et al (2007) Transcription factors Csx/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart. J Mol Cell Cardiol 42:1045–1053CrossRefGoogle Scholar
  11. 11.
    Ueba H, Brines M, Yamin M, Umemoto T, Ako J, Momomura S et al (2010) Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc Natl Acad Sci USA 107:14357–14362CrossRefGoogle Scholar
  12. 12.
    Taylor GT, Weiss J, Pitha J (1989) Testosterone in a cyclodextrin-containing formulation: behavioral and physiological effect of episode-like pulses in rats. Pharm Res 6:641–646CrossRefGoogle Scholar
  13. 13.
    Witayavanitkul N, Woranush W, Bupha-Intr T, Wattanapermpool J (2013) Testosterone regulates cardiac contractile activation by modulating SERCA but not NCX activity. Am J Physiol Heart Circ Physiol 304:H465–H472CrossRefGoogle Scholar
  14. 14.
    Schulte JS, Seidl MD, Nunes F, Freese C, Schneider M, Schmitz W et al (2012) CREB critically regulates action potential shape and duration in the adult mouse ventricle. Am J Physiol Heart Circ Physiol 302:H1998–H2007CrossRefGoogle Scholar
  15. 15.
    Suzuki E, Eda-Fujiwara H, Satoh R, Saito R, Miyamoto T (2013) The effect of androgen on the retention of extinction memory after conditioned taste aversion in mice. J Physiol Sci 63:171–181CrossRefGoogle Scholar
  16. 16.
    Dela Cruz C, Pereira OC (2012) Prenatal testosterone supplementation alters puberty onset, aggressive behavior, and partner preference in adult male rats. J Physiol Sci 62:123–131CrossRefGoogle Scholar
  17. 17.
    Kitaoka Y, Machida M, Takemasa T, Hatta H (2011) Expression of monocarboxylate transporter (MCT) 1 and MCT4 in overloaded mice plantaris muscle. J Physiol Sci 61:467–472CrossRefGoogle Scholar
  18. 18.
    Fujisawa T, Shinohara K (2011) Sex differences in the recognition of emotional prosody in late childhood and adolescence. J Physiol Sci 61:429–435CrossRefGoogle Scholar
  19. 19.
    Jelodar G, Khaksar Z, Pourahmadi M (2009) Endocrine profile and testicular histomorphometry in adult rat offspring of diabetic mothers. J Physiol Sci 59:377–382CrossRefGoogle Scholar
  20. 20.
    Kłapcińska B, Jagsz S, Sadowska-Krepa E, Górski J, Kempa K, Langfort J (2008) Effects of castration and testosterone replacement on the antioxidant defense system in rat left ventricle. J Physiol Sci 58:173–177CrossRefGoogle Scholar
  21. 21.
    Goto K, Takahashi K, Yamamoto M, Takamatsu K (2008) Hormone and recovery responses to resistance exercise with slow movement. J Physiol Sci 58:7–14CrossRefGoogle Scholar
  22. 22.
    Drici MD, Burklow TR, Haridasse V, Glazer RI, Woosley RL (1996) Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 94:1471–1474CrossRefGoogle Scholar
  23. 23.
    Trépanier-Boulay V, St-Michel C, Tremblay A, Fiset C (2001) Gender-based differences in cardiac repolarization in mouse ventricle. Circ Res 89:437–444CrossRefGoogle Scholar
  24. 24.
    Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T (2005) Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation 112:1701–1710CrossRefGoogle Scholar
  25. 25.
    Akazawa H (2015) Mechanisms of cardiovascular homeostasis and pathophysiology—from gene expression, signal transduction to cellular communication. Circ J 79:2529–2536CrossRefGoogle Scholar
  26. 26.
    Krystien VL, Christian W, Arthur AW (2016) Catecholaminergic polymorphic ventricular tachycardia. Circ J 80:1285–1291CrossRefGoogle Scholar
  27. 27.
    Pham TV, Rosen MR (2002) Sex, hormones, and repolarization. Cardiovasc Res 53:740–751CrossRefGoogle Scholar
  28. 28.
    Nakagawa M, Takahashi N, Watanabe M, Ichinose M, Nobe S, Yonemochi H et al (2003) Gender differences in ventricular repolarization: terminal T wave interval was shorter in women than in men. Pacing Clin Electrophysiol 26:59–64CrossRefGoogle Scholar
  29. 29.
    Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ, Valverde E et al (2000) Sex-dependent electrocardiographic pattern of cardiac repolarization. Heart J 140:430–436CrossRefGoogle Scholar
  30. 30.
    Fülöp L, Bányász T, Szabó G, Tóth IB, Bíró T, Lôrincz I et al (2006) Effects of sex hormones on ECG parameters and expression of cardiac ion channels in dogs. Acta Physiol 188:163–171CrossRefGoogle Scholar
  31. 31.
    Charbit B, Christin-Maître S, Démolis JL, Soustre E, Young J, Funck-Brentano C (2009) Effects of testosterone on ventricular repolarization in hypogonadic men. Am J Cardiol 103:887–890CrossRefGoogle Scholar
  32. 32.
    James AF, Choisy SC, Hancox JC (2007) Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol 94:265–319CrossRefGoogle Scholar
  33. 33.
    Lucas-Herald A, Alves-Lopes R, Montezano AC, Ahmed SF, Touyz RM (2017) Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clin Sci 131:1405–1418CrossRefGoogle Scholar
  34. 34.
    Zhang L, Wu S, Ruan Y, Hong L, Xing X, Lai W (2011) Testosterone suppresses oxidative stress via androgen receptor-independent pathway in murine cardiomyocytes. Mol Med Rep 4:1183–1188PubMedGoogle Scholar
  35. 35.
    Zhu Y, Ai X, Oster RA, Bers DM, Pogwizd SM (2013) Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits. Pflugers Arch 465:805–818CrossRefGoogle Scholar
  36. 36.
    Mucha M, Ooi L, Linley JE, Mordaka P, Dalle C, Robertson B et al (2010) Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci 30:13235–13245CrossRefGoogle Scholar
  37. 37.
    Akuzawa-Tateyama M, Tateyama M, Ochi R (2006) Sustained β-adrenergic stimulation increased l-type Ca2+ channel expression in cultured quiescent ventricular myocytes. J Physiol Sci 56:165–172CrossRefGoogle Scholar
  38. 38.
    Noseda M, Abreu-Paiva M, Schneider MD (2015) The quest for the adult cardiac stem cell. Circ J 79:1422–1430CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology and Clinical ExaminationOita University School of MedicineYufuJapan
  2. 2.Department of PathophysiologyOita University School of MedicineYufuJapan

Personalised recommendations