The Journal of Physiological Sciences

, Volume 68, Issue 4, pp 471–482 | Cite as

Possible involvement of central oxytocin in cisplatin-induced anorexia in rats

  • Koichi Arase
  • Hirofumi Hashimoto
  • Satomi Sonoda
  • Hiromichi Ueno
  • Reiko Saito
  • Yasuhito Motojima
  • Mitsuhiro Yoshimura
  • Takashi Maruyama
  • Keiji Hirata
  • Yasuhito Uezono
  • Yoichi UetaEmail author
Original Paper


During cancer chemotherapy, drugs such as 5-HT3 receptor antagonists have typically been used to control vomiting and anorexia. We examined the effects of oxytocin (OXT), which has been linked to appetite, on cisplatin-induced anorexia in rats. Fos-like immunoreactivity (Fos-LI) expressed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the area postrema and the nucleus of the solitary tract (NTS) after intraperitoneal (ip) administration of cisplatin. We also examined the fluorescence intensity of OXT-mRFP1 after ip administration of cisplatin in OXT-mRFP1 transgenic rats. The mRFP1 fluorescence intensity was significantly increased in the SON, the PVN, and the NTS after administration of cisplatin. The cisplatin-induced anorexia was abolished by OXT receptor antagonist (OXTR-A) pretreatment. In the OXT-LI cells, cisplatin-induced Fos expression in the SON and the PVN was also suppressed by OXTR-A pretreatment. These results suggested that central OXT may be involved in cisplatin-induced anorexia in rats.


Fos Hypothalamus Monomeric red fluorescent protein 1 (mRFP1) Paraventricular nucleus Supraoptic nucleus 



We would like to thank Ms. Kanako Shoguchi and Ms. Yuki Nonaka (University of Occupational and Environmental Health, Kitakyushu, Japan) for their technical assistance. This study was supported by Grant-in-Aid for Scientific Research (C) number 16K08537 from the Japan Society for the Promotion of Science (JSPS), the Japan Agency for Medical Research and Development (AMED), and a research grant from Mitsubishi Tanabe Pharma Corporation.

Author contributions

KA: study design/experimental studies/figure preparation/manuscript preparation/statistical analysis; HH: study design/experimental studies/figure preparation/manuscript preparation/statistical analysis/manuscript review; SS: experimental studies/manuscript editing; HU: experimental studies/manuscript editing; RS: experimental studies/manuscript editing; YM: experimental studies/manuscript editing; MY: manuscript editing/experimental studies/manuscript review; TM: manuscript editing; KH: study design/guarantor of integrity of the study/manuscript editing; YU: study design/guarantor of integrity of the study; YU: study design/guarantor of integrity of the study/manuscript review/final approval.

Compliance with ethical standards

Conflict of interest

None of the authors has a conflict of interest to disclose.


This study was funded by Grant-in-Aid for Scientific Research (C) number 16K08537 from the Japan Society for the Promotion of Science (JSPS), the Japan Agency for Medical Research and Development (AMED), a and research grant from Mitsubishi Tanabe Pharma Corporation.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of our institution or practice at which the studies were conducted under the control of the Ethics Committee of Animal Care and Experimentation, University of Occupational and Environmental Health, Japan.


  1. 1.
    Percie du Sert N, Rudd JA, Apfel CC, Andrews PL (2011) Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT (3) receptor antagonists. Cancer Chemother Pharmacol 67:667–686CrossRefGoogle Scholar
  2. 2.
    Shinkai T, Saijo N, Eguchi K, Sasaki Y, Tamura T, Fujiwara Y, Mae M, Fukuda M, Ohe Y, Sasaki S et al (1989) Control of cisplatin-induced delayed emesis with metoclopramide and dexamethasone: a randomized controlled trial. Jpn J Clin Oncol 19:40–44PubMedGoogle Scholar
  3. 3.
    Ruhlmann C, Herrstedt J (2009) Casopitant: a novel NK(1)-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting. Ther Clin Risk Manag 5:375–384PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kocsis F, Klein W, Altmann H (1973) A screening system to determine inhibition of specific enzymes of the semiconservative DNA-synthesis and DNA-repair replication (author’s transl). Zeitschrift fur Naturforschung Teil C Biochemie Biophysik Biologie 28:131–135Google Scholar
  5. 5.
    De Jonghe BC, Horn CC (2009) Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 296:902–911CrossRefGoogle Scholar
  6. 6.
    Horn CC (2009) Brain Fos expression induced by the chemotherapy agent cisplatin in the rat is partially dependent on an intact abdominal vagus. Auton Neurosci 148:76–82CrossRefGoogle Scholar
  7. 7.
    Horn CC, De Jonghe BC, Matyas K, Norgren R (2009) Chemotherapy-induced kaolin intake is increased by lesion of the lateral parabrachial nucleus of the rat. Am J Physiol Regul Integr Comp Physiol 297:1375–1382CrossRefGoogle Scholar
  8. 8.
    Holland RA, Leonard JJ, Kensey NA, Hannikainen PA, De Jonghe BC (2014) Cisplatin induces neuronal activation and increases central AMPA and NMDA receptor subunit gene expression in mice. Physiol Behav 136:79–85CrossRefGoogle Scholar
  9. 9.
    Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM (1987) Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab 64:27–31CrossRefGoogle Scholar
  10. 10.
    Carmichael MS, Warburton VL, Dixen J, Davidson JM (1994) Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav 23:59–79CrossRefGoogle Scholar
  11. 11.
    Russell J, Leng G (1998) Sex, parturition and motherhood without oxytocin? J Endocrinol 157:342–359CrossRefGoogle Scholar
  12. 12.
    Leckman JF, Goodman WK, North WG, Chappell PB, Price LH, Pauls DL, Anderson GM, Riddle MA, McDougle CJ, Barr LC, Donald J, Cohen DJ (1994) The role of central oxytocin in obsessive compulsive disorder and related normal behavior. Psychoneuroendocrinology 19:723–749CrossRefGoogle Scholar
  13. 13.
    Stock S, Uvnas-Moberg K (1988) Increased plasma levels of oxytocin in response to afferent electrical stimulation of the sciatic and vagal nerves and in response to touch and pinch in anaesthetized rats. Acta Physiol Scand 132:29–34CrossRefGoogle Scholar
  14. 14.
    Uvnäs-Moberg K, Bruzelius G, Alster P, Lundeberg T (1993) The antinociceptive effect of non-noxious sensory stimulation is mediated partly through oxytocinergic mechanisms. Acta Physiol Scand 149:199–204CrossRefGoogle Scholar
  15. 15.
    Higashida H, Lopatina O, Yoshihara T, Pichugina YA, Soumarokov AA, Munesue T, Minabe Y, Kikuchi M, Ono Y, Korshunova N, Salmina AB (2010) Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J Neuroendocrinol 22:373–379CrossRefGoogle Scholar
  16. 16.
    Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22:1723–1734CrossRefGoogle Scholar
  17. 17.
    Leng G, Onaka T, Caquineau C, Sabatier N, Tobin VA, Takayanagi Y (2008) Oxytocin and appetite. Prog Brain Res 170:137–151CrossRefGoogle Scholar
  18. 18.
    Pedersen CA, Vadlamudi SV, Boccia ML, Amico JA (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5:274–281CrossRefGoogle Scholar
  19. 19.
    Olson BR, Drutarosky MD, Chow MS, Hruby VJ, Stricker EM, Verbalis JG (1991) Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12:113–118CrossRefGoogle Scholar
  20. 20.
    Verbalis JG, Blackburn RE, Olson BR, Stricker EM (1993) Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Regul Pept 45:149–154CrossRefGoogle Scholar
  21. 21.
    Verbalis JG, Blackburn RE, Hoffman GE, Stricker EM (1995) Establishing behavioral and physiological functions of central oxytocin: insights from studies of oxytocin and ingestive behaviors. Adv Exp Med Biol 395:209–225PubMedGoogle Scholar
  22. 22.
    Katoh A, Fujihara H, Ohbuchi T, Onaka T, Hashimoto T, Kawata M, Suzuki H, Ueta Y (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 52:2768–2774CrossRefGoogle Scholar
  23. 23.
    Katoh A, Shoguchi K, Matsuoka H, Yoshimura M, Ohkubo JI, Matsuura T, Maruyama T, Ishikura T, Aritomi T, Fujihara H, Hashimoto H, Suzuki H, Murphy D, Ueta Y (2014) Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes. J Neuroendocrinol 26:341–347CrossRefGoogle Scholar
  24. 24.
    Matsuura T, Kawasaki M, Hashimoto H, Ishikura T, Yoshimura M, Ohkubo JI, Maruyama T, Motojima Y, Sabanai K, Mori T, Ohnishi H, Sakai A, Ueta Y (2015) Fluorescent visualisation of oxytocin in the hypothalamo-neurohypophysial/-spinal pathways after chronic inflammation in oxytocin-monomeric red fluorescent protein 1 transgenic rats. J Neuroendocrinol 27:636–646CrossRefGoogle Scholar
  25. 25.
    Motojima Y, Kawasaki M, Matsuura T, Saito R, Yoshimura M, Hashimoto H, Ueno H, Maruyama T, Suzuki H, Ohnishi H, Sakai A, Ueta Y (2016) Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats. Neurosci Res 109:63–69CrossRefGoogle Scholar
  26. 26.
    Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, AmsterdamGoogle Scholar
  27. 27.
    Hashimoto H, Hyodo S, Kawasaki M, Mera T, Chen L, Soya A, Saito T, Fujihara H, Higuchi T, Takei Y, Ueta Y (2005) Centrally administered adrenomedullin 2 activates hypothalamic oxytocin-secreting neurons, causing elevated plasma oxytocin level in rats. Am J Physiol Endocrinol Metab 289(5):E753–E761CrossRefGoogle Scholar
  28. 28.
    Ariumi H, Saito R, Nago S, Hyakusoku M, Takano Y, Kamiya H (2000) The role of tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neurosci Lett 286:123–126CrossRefGoogle Scholar
  29. 29.
    Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA (2003) Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol 285:566–576CrossRefGoogle Scholar
  30. 30.
    Ray AP, Griggs L, Darmani NA (2009) Delta 9-tetrahydrocannabinol suppresses vomiting behavior and Fos expression in both acute and delayed phases of cisplatin-induced emesis in the least shrew. Behav Brain Res 196:30–36CrossRefGoogle Scholar
  31. 31.
    Horn CC, Ciucci M, Chaudhury A (2007) Brain Fos expression during 48 hours after cisplatin treatment: neural pathways for acute and delayed visceral sickness. Auton Neurosci 132:44–51CrossRefGoogle Scholar
  32. 32.
    Batra VR, Schrott LM (2011) Acute oxycodone induces the pro-emetic pica response in rats. J Pharmacol Exp Ther 339:738–745CrossRefGoogle Scholar
  33. 33.
    Cui Y, Wang L, Shi G, Liu L, Pei P, Guo J (2016) Electroacupuncture alleviates cisplatin-induced nausea in rats. Acupunct Med 34:120–126CrossRefGoogle Scholar
  34. 34.
    De Jonghe BC, Holland RA, Olivos DR, Rupprecht LE, Kanoski SE, Hayes MR (2016) Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea. Physiol Behav 153:109–114CrossRefGoogle Scholar
  35. 35.
    Ludwig M, Stern J (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 370. doi: 10.1098/rstb.2014.0182
  36. 36.
    De Jonghe BC, Horn CC (2008) Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat. Am J Physiol Regul Integr Comp Physiol 294:756–765CrossRefGoogle Scholar
  37. 37.
    Berthoud HR, Neuhuber WL (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85:1–17CrossRefGoogle Scholar
  38. 38.
    Cunningham ET Jr, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274:60–76CrossRefGoogle Scholar
  39. 39.
    Ueta Y, Kannan H, Higuchi T, Negoro H, Yamaguchi K, Yamashita H (2000) Activation of gastric afferents increases noradrenaline release in the paraventricular nucleus and plasma oxytocin level. J Auton Nerv 78:69–76CrossRefGoogle Scholar
  40. 40.
    Maejima Y, Sedbazar U, Suyama S, Kohno D, Onaka T, Takano E, Yoshida N, Koike M, Uchiyama Y, Fujiwara K, Yashiro T, Horvath TL, Dietrich MO, Tanaka S, Dezaki K, Oh-I S, Hashimoto K, Shimizu H, Nakata M, Mori M, Yada T (2009) Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab 10:355–365CrossRefGoogle Scholar
  41. 41.
    Sabatier M, Pont F, Arnaud MJ, Turnlund JR (2003) A compartmental model of magnesium metabolism in healthy men based on two stable isotope tracers. Am J Physiol Regul Integr Comp Physiol 285:656–663CrossRefGoogle Scholar
  42. 42.
    Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW (1997) Melanocortin receptors in leptin effects. Nature 390:349CrossRefGoogle Scholar
  43. 43.
    Shah BP, Vong L, Olson DP, Koda S, Krashes MJ, Ye C, Yang Z, Fuller PM, Elmquist JK, Lowell BB (2014) MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc Natl Acad Sci USA 111:13193–13198CrossRefGoogle Scholar
  44. 44.
    Siljee JE, Unmehopa UA, Kalsbeek A, Swaab DF, Fliers E, Alkemade A (2013) Melanocortin 4 receptor distribution in the human hypothalamus. Eur J Endocrinol 168:361–369CrossRefGoogle Scholar
  45. 45.
    Singru PS, Wittmann G, Farkas E, Zséli G, Fekete C, Lechan RM (2012) Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS). Endocrinology 153:3804–3814CrossRefGoogle Scholar
  46. 46.
    Thompson KL, Vincent SH, Miller RR, Colletti AE, Alvaro RF, Wallace MA, Feeney WP, Chiu SH (1997) Pharmacokinetics and disposition of the oxytocin receptor antagonist L-368,899 in rats and dogs. Drug Metab Dispos 25(10):1113–1118PubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Koichi Arase
    • 1
    • 2
  • Hirofumi Hashimoto
    • 2
  • Satomi Sonoda
    • 2
  • Hiromichi Ueno
    • 2
  • Reiko Saito
    • 2
  • Yasuhito Motojima
    • 2
  • Mitsuhiro Yoshimura
    • 2
  • Takashi Maruyama
    • 2
  • Keiji Hirata
    • 1
  • Yasuhito Uezono
    • 3
  • Yoichi Ueta
    • 2
    Email author
  1. 1.Department of Surgery 1, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
  2. 2.Department of Physiology, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
  3. 3.Division of Cancer PathophysiologyNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations