Advertisement

The Journal of Physiological Sciences

, Volume 68, Issue 4, pp 345–353 | Cite as

A rotating cerium anode X-ray system allows visualization of intramural coronary vessels after cardiac stem cell therapy for myocardial infarction

  • Chiharu Tanaka
  • Toru Hosoda
  • Yoshimori Ikeya
  • Yoshiro Shinozaki
  • Kikue Todoroki
  • Toru Shizuma
  • Takashi Shiraishi
  • Naoto Fukuyama
  • Toshihiko Ueda
  • Hidezo Mori
Original Paper
  • 150 Downloads

Abstract

Conventional angiography is insufficient for evaluating the therapeutic effect of cardiac regeneration therapy. A microangiographic X-ray system using a cerium anode was developed. Cerium has a characteristic X-ray with a peak at 34.6 keV, which allows visualization of tiny amounts of iodine. The performance of the cerium anode X-ray system was evaluated in two excised normal canine hearts and in excised ischemic canine hearts treated with c-kit-positive cardiac stem cells (5 canines) or without cells (5 control canines). In the normal canines, branches penetrating from the left anterior descending artery into the myocardium were visualized, down to third-order branches. In just the treated hearts treated with stem cells, small vessels characterized by irregular vessel walls were observed. The cerium anode X-ray system allowed visualization of microvessels in excised ischemic canine hearts, and may evaluate the effect of cardiac stem cell therapy.

Keywords

Microangiography C-kit-positive cardiac stem cells Cerium anode Myocardial infarction Canine models 

Notes

Acknowledgements

The study was supported by Grants-in-Aid for Scientific Research B (20390336, 2007–2010), Grant-in-Aid for Young Scientists B (25861233, 2013–2014), and Grants-in-Aid from The Cardiovascular Research Fund, Tokyo, Japan (H24-06-01, 2013–2014). Additionally, it was partly supported by a research grant from Health and Labour Sciences Research Grant (200624005A, 2004–2006) and The Research Funding for Longevity Sciences from National Center for Geriatrics and Gerontology (NCGG), Japan (22-5, 2010–2012). We would like to acknowledge Masaki Inoue, Emiko Hayashi (Tokai University Institute of Innovative Science and Technology, Kanagawa, Japan), Sachie Tanaka, Yoko Takahari, Yoshiko Shinozaki, Katsuko Naito (Support Center for Medical Research and Education, Tokai University School of Medicine, Kanagawa, Japan), Fujio Ando and Rie Hasegawa (Tokai University Imaging Center, Kanagawa, Japan), who contributed to the experiments.

Author contributions

Design of study; CT, TH, HM. Experiment; CT, TH, YI, YS, KT, TS, TS. NF, HM. Data collecting and analyzing; CT, KT, HM, Drafting the article; CT, TH, HM.

Compliance with ethical standards

Funding

This study was funded by Grants-in-Aid for Scientific Research B (20390336, 2007–2010), Grant-in-Aid for Young Scientists B (25861233, 2013–2014), and Grants-in-Aid from The Cardiovascular Research Fund, Tokyo, Japan (H24-06-01, 2013–2014). Additionally, it was partly supported by a research grant from Health and Labour Sciences Research Grant (200624005A, 2004–2006) and The Research Funding for Longevity Sciences from National Center for Geriatrics and Gerontology (NCGG), Japan (22-5, 2010–2012).

Conflict of interest

The authors declare that they have no conflict interest other than the funding mentioned above.

Research involving animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

This article does not contain any studies with human participants.

References

  1. 1.
    Borisenko O, Wylie G, Payne J, Bjessmo S, Smith J, Firmin R, Yonan N (2014) The cost impact of short-term ventricular assist devices and extracorporeal life support systems therapies on the National Health Service in the UK. Interact Cardiovasc Thorac Surg 19:41–48CrossRefPubMedGoogle Scholar
  2. 2.
    Khazanie P, Hammill BG, Patel CB, Eapen ZJ, Peterson ED, Rogers JG, Milano CA, Curtis LH, Hernandez AF (2014) Trends in the use and outcomes of ventricular assist devices among medicare beneficiaries, 2006 through 2011. J Am Coll Cardiol 63:1395–1404CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alba AC, Alba LF, Delgado DH, Rao V, Ross HJ, Goeree R (2013) Cost-effectiveness of ventricular assist device therapy as a bridge to transplantation compared with nonbridged cardiac recipients. Circulation 127:2424–2435CrossRefPubMedGoogle Scholar
  4. 4.
    John VF, Roger JH (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110:3378–3383CrossRefGoogle Scholar
  5. 5.
    Rosalinda M, Linda WVL, Sean MD, Felix BE, Derek JH, Sandrine L, Jonathan L, Cinzia P, Rainer S, Kirsti Y, Ulf L, Christine LM, Stefan J, James W, Thomas E, Péter F, Joost PGS (2016) Position paper of the european society of cardiology working group cellular biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. doi: 10.1093/eurheartj/ehw113 CrossRefGoogle Scholar
  6. 6.
    Choi SH, Jung SY, Kwon SM, Baek SH (2012) Perspectives on stem cell therapy for cardiac regeneration. Adv Chall Circ J 76:1307–1312CrossRefGoogle Scholar
  7. 7.
    Hosoda T (2012) C-kit-positive cardiac stem cells and myocardial regeneration. Am J Cardiovasc Dis 2:58–67PubMedGoogle Scholar
  8. 8.
    Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA 106:15885–15890CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (scipio): initial results of a randomised phase 1 trial. Lancet 378:1847–1857CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the scipio trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54–S64CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mori H, Hyodo K, Tanaka E, Uddin-Mohammed M, Yamakawa A, Shinozaki Y, Nakazawa H, Tanaka Y, Sekka T, Iwata Y, Handa S, Umetani K, Ueki H, Yokoyama T, Tanioka K, Kubota M, Hosaka H, Ishikawa N, Ando M (1996) Small-vessel radiography in situ with monochromatic synchrotron radiation. Radiology 201:173–177CrossRefPubMedGoogle Scholar
  14. 14.
    Mori H, Hyodo K, Tobita K, Chujo M, Shinozaki Y, Sugishita Y, Ando M (1994) Visualization of penetrating transmural arteries in situ by monochromatic synchrotron radiation. Circulation 89:863–871CrossRefPubMedGoogle Scholar
  15. 15.
    Abudurexiti A, Kameda M, Sato E, Abderyim P, Enomoto T, Watanabe M, Hitomi K, Tanaka E, Mori H, Kawai T, Takahashi K, Sato S, Ogawa A, Onagawa J (2010) Demonstration of iodine k-edge imaging by use of an energy-discrimination x-ray computed tomography system with a cadmium telluride detector. Radiol Phys Technol 3:127–135CrossRefPubMedGoogle Scholar
  16. 16.
    Matsukiyo H, Watanabe M, Sato E, Osawa A, Enomoto T, Nagao J, Abderyim P, Aizawa K, Tanaka E, Mori H, Kawai T, Ehara S, Sato S, Ogawa A, Onagawa J (2009) X-ray fluorescence camera for imaging of iodine media in vivo. Radiol Phys Technol 2:46–53CrossRefPubMedGoogle Scholar
  17. 17.
    Nakajima Y, Akizuki N, Kimura Y, Kohguchi H, Tanaka A, Chujo M, Hattan N, Shinozaki Y, Iida A, Handa S, Nakazawa H, Mori H (1999) Intramyocardial vascular volume distribution studied by synchrotron radiation-excited x-ray fluorescence. Am J Physiol 277:H2353–H2362PubMedGoogle Scholar
  18. 18.
    Mori H, Haruyama S, Shinozaki Y, Okino H, Iida A, Takanashi R, Sakuma I, Husseini WK, Payne BD, Hoffman JI (1992) New nonradioactive microspheres and more sensitive x-ray fluorescence to measure regional blood flow. Am J Physiol 263:H1946–H1957PubMedGoogle Scholar
  19. 19.
    Myojin K, Taguchi A, Umetani K, Fukushima K, Nishiura N, Matsuyama T, Kimura H, Stern DM, Imai Y, Mori H (2007) Visualization of intracerebral arteries by synchrotron radiation microangiography. Am J Neuroradiol 28:953–957PubMedGoogle Scholar
  20. 20.
    Sato E, Tanaka E, Mori H, Kawai T, Ichimaru T, Sato S, Takayama K, Ido H (2004) Demonstration of enhanced k-edge angiography using a cerium target x-ray generator. Med Phys 31:3017–3021CrossRefPubMedGoogle Scholar
  21. 21.
    Tanaka A, Mori H, Tanaka E, Mohammed MU, Tanaka Y, Sekka T, Ito K, Shinozaki Y, Hyodo K, Ando M, Umetani K, Tanioka K, Kubota M, Abe S, Handa S, Nakazawa H (1999) Branching patterns of intramural coronary vessels determined by microangiography using synchrotronradiation. Am J Physiol 276(6 Pt 2):H2262–H2267PubMedGoogle Scholar
  22. 22.
    Ian YC, Joseph CW (2011) Cardiovascular molecular imaging focus on clinical translation. Circulation 123:425–443CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Chiharu Tanaka
    • 1
  • Toru Hosoda
    • 2
  • Yoshimori Ikeya
    • 3
  • Yoshiro Shinozaki
    • 4
  • Kikue Todoroki
    • 3
  • Toru Shizuma
    • 3
  • Takashi Shiraishi
    • 5
  • Naoto Fukuyama
    • 3
  • Toshihiko Ueda
    • 1
  • Hidezo Mori
    • 3
  1. 1.Department of Cardiovascular SurgeryTokai University School of MedicineIseharaJapan
  2. 2.Tokai University Institute of Innovative Science and TechnologyIseharaJapan
  3. 3.Department of PhysiologyTokai University School of MedicineIseharaJapan
  4. 4.Support Center for Medical Research and EducationTokai University School of MedicineIseharaJapan
  5. 5.NHK Engineering Services, Inc.TokyoJapan

Personalised recommendations