Advertisement

The Journal of Physiological Sciences

, Volume 67, Issue 2, pp 271–281 | Cite as

Adaptation to microgravity, deconditioning, and countermeasures

  • Kunihiko TanakaEmail author
  • Naoki Nishimura
  • Yasuaki Kawai
Review

Abstract

Humans are generally in standing or sitting positions on Earth during the day. The musculoskeletal system supports these positions and also allows motion. Gravity acting in the longitudinal direction of the body generates a hydrostatic pressure difference and induces footward fluid shift. The vestibular system senses the gravity of the body and reflexively controls the organs. During spaceflight or exposure to microgravity, the load on the musculoskeletal system and hydrostatic pressure difference is diminished. Thus, the skeletal muscle, particularly in the lower limbs, is atrophied, and bone minerals are lost via urinary excretion. In addition, the heart is atrophied, and the plasma volume is decreased, which may induce orthostatic intolerance. Vestibular-related control also declines; in particular, the otolith organs are more susceptible to exposure to microgravity than the semicircular canals. Using an advanced resistive exercise device with administration of bisphosphonate is an effective countermeasure against bone deconditioning. However, atrophy of skeletal muscle and the heart has not been completely prevented. Further ingenuity is needed in designing countermeasures for muscular, cardiovascular, and vestibular dysfunctions.

Keywords

Spaceflight Gravity Atrophy Bone mineral density Hydrostatic pressure Orthostatic intolerance Bisphosphonate 

Notes

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Joseph J (1976) Locomotor system. In: Hamilton WJ (ed) Textbook of human anatomy. The macmillan press, LondonGoogle Scholar
  2. 2.
    Kumakura H, Inokuchi S (1991) Lay-out of the human triceps surae muscle: with special concern for the origin of the human bipedal posture. Showa Univ J Med Sci 3:79–89CrossRefGoogle Scholar
  3. 3.
    Suzuki A, Hayama S (1994) Individual variation in myofiber type composition in the triceps surae and flexor digitorum superficialis. Anthropol Sci 102(Suppl):127–138CrossRefGoogle Scholar
  4. 4.
    St George RJ, Fitzpatrick RC (2011) The sense of self-motion, orientation and balance explored by vestibular stimulation. J Physiol 589:807–813PubMedCrossRefGoogle Scholar
  5. 5.
    Watenpaugh DE, Hargens AR (1996) The cardiovascular system in microgravity. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, the gravitational environment. American Physiological Society, MarylandGoogle Scholar
  6. 6.
    Hargens AR, Watenpaugh DE (1996) Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc 28:977–982PubMedCrossRefGoogle Scholar
  7. 7.
    Dampney RA, Stella A, Golin R, Zanchetti A (1979) Vagal and sinoaortic reflexes in postural control of circulation and renin release. Am J Physiol 237:H146–H152PubMedGoogle Scholar
  8. 8.
    Sato T, Kawada T, Sugimachi M, Sunagawa K (2002) Bionic technology revitalizes native baroreflex function in rats with baroreflex failure. Circulation 106:730–734PubMedCrossRefGoogle Scholar
  9. 9.
    Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120: 904–914Google Scholar
  10. 10.
    Hargens AR, Vico L (2016) Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985) 120: 891–903Google Scholar
  11. 11.
    Globus RK, Morey-Holton E (2016) Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 120: 1196–1206Google Scholar
  12. 12.
    Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473PubMedCrossRefGoogle Scholar
  13. 13.
    Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266PubMedCrossRefGoogle Scholar
  14. 14.
    Sickles DW, Pinkstaff CA (1981) Comparative histochemical study of prosimian primate hind limb muscles. I. Muscle fiber types. Am J Anat 160:175–186PubMedCrossRefGoogle Scholar
  15. 15.
    Acosta L Jr, Roy RR (1987) Fiber-type composition of selected hind limb muscles of a primate (cynomolgus monkey). Anat Rec 218:136–141PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki A, Cassens RG (1983) A histochemical study of myofiber types in the serratus ventralis thoracis muscle of sheep during growth. J Anim Sci 56:1447–1458PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129PubMedCrossRefGoogle Scholar
  18. 18.
    Armstrong RB, Saubert CWt, Seeherman HJ, Taylor CR (1982) Distribution of fiber types in locomotory muscles of dogs. Am J Anat 163:87–98PubMedCrossRefGoogle Scholar
  19. 19.
    Suzuki A, Tamate H (1988) Distribution of myofiber types in the hip and thigh musculature of sheep. Anat Rec 221:494–502PubMedCrossRefGoogle Scholar
  20. 20.
    Smith JL, Edgerton VR, Betts B, Collatos TC (1977) EMG of slow and fast ankle extensors of cat during posture, locomotion, and jumping. J Neurophysiol 40:503–513PubMedGoogle Scholar
  21. 21.
    Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41:1203–1216PubMedGoogle Scholar
  22. 22.
    Burke RE (1981) Motor units: anatomy, physiology, and functional organization. In: Brooks VB (ed) Handbook of physiology, the nerve system, vol II, motor control. American Physiological Society, MarylandGoogle Scholar
  23. 23.
    Gollnick PD, Sjodin B, Karlsson J, Jansson E, Saltin B (1974) Human soleus muscle: a comparison of fiber composition and enzyme activities with other leg muscles. Pflugers Arch 348:247–255PubMedCrossRefGoogle Scholar
  24. 24.
    LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 66:1151–1154PubMedGoogle Scholar
  25. 25.
    Akima H, Kawakami Y, Kubo K, Sekiguchi C, Ohshima H, Miyamoto A, Fukunaga T (2000) Effect of short-duration spaceflight on thigh and leg muscle volume. Med Sci Sports Exerc 32:1743–1747PubMedCrossRefGoogle Scholar
  26. 26.
    Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89:823–839PubMedGoogle Scholar
  27. 27.
    LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164PubMedGoogle Scholar
  28. 28.
    Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR et al (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78:1733–1739PubMedGoogle Scholar
  29. 29.
    Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH (1999) Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 516(Pt 3):915–930PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, Edgerton VR (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hind limb suspension. J Appl Physiol 73:51S–57SPubMedGoogle Scholar
  31. 31.
    Alford EK, Roy RR, Hodgson JA, Edgerton VR (1987) Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hind limb suspension. Exp Neurol 96:635–649PubMedCrossRefGoogle Scholar
  32. 32.
    Winiarski AM, Roy RR, Alford EK, Chiang PC, Edgerton VR (1987) Mechanical properties of rat skeletal muscle after hind limb suspension. Exp Neurol 96:650–660PubMedCrossRefGoogle Scholar
  33. 33.
    Ohira T, Kawano F, Ohira T, Goto K, Ohira Y (2015) Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 65:293–310PubMedCrossRefGoogle Scholar
  34. 34.
    Narici M, Kayser B, Barattini P, Cerretelli P (2003) Effects of 17-day spaceflight on electrically evoked torque and cross-sectional area of the human triceps surae. Eur J Appl Physiol 90:275–282PubMedCrossRefGoogle Scholar
  35. 35.
    Goubel F (1997) Changes in mechanical properties of human muscle as a result of spaceflight. Int J Sports Med 18(Suppl 4):S285–S287PubMedCrossRefGoogle Scholar
  36. 36.
    Schneider SV, LeBlanc AD, Taggart LC (1994) Bone and mineral metabolism. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space physiology and medicine. A Waverly Company, PhiladelphiaGoogle Scholar
  37. 37.
    Rambaut PC, Johnston RS (1979) Prolonged weightlessness and calcium loss in man. Acta Astronaut 6:1113–1122PubMedCrossRefGoogle Scholar
  38. 38.
    Rambaut PC, Leach CS, Whedon GD (1979) A study of metabolic balance in crewmembers of Skylab IV. Acta Astronaut 6:1313–1322PubMedCrossRefGoogle Scholar
  39. 39.
    Whedon GD, Lutwak L, Rambaut PC, Whittle MW, Smith MC, Reid J, Leach CS, Stadler CR, Stanford DD (1977) Mineral and nitrogen metabolic studies, experiment M701. In: Johnson RS, Dietlein LE (eds) Biomedical results from Skylab NASA SP-377. NASA, Washinton, DCGoogle Scholar
  40. 40.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012PubMedCrossRefGoogle Scholar
  41. 41.
    LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7:33–47PubMedGoogle Scholar
  42. 42.
    Smith SM, Zwart SR (2008) Nutritional biochemistry of spaceflight. Adv Clin Chem 46:87–130PubMedCrossRefGoogle Scholar
  43. 43.
    Oganov VS, Schneider VS (1996) Skeletal system. In: Nicogossian AE, Gazenko OG (eds) Space biology and medicine. American Institute of Aeronautics and Astronautics, RestonGoogle Scholar
  44. 44.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160PubMedGoogle Scholar
  45. 45.
    Miyamoto A, Shigematsu T, Fukunaga T, Kawakami K, Mukai C, Sekiguchi C (1998) Medical baseline data collection on bone and muscle change with space flight. Bone 22:79S–82SPubMedCrossRefGoogle Scholar
  46. 46.
    Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, Nawawi HM, Nor-Ashikin MN, Froemming GR (2014) Morphological and phenotypical characteristics of human osteoblasts after short-term space mission. Bull Exp Biol Med 156:393–398PubMedCrossRefGoogle Scholar
  47. 47.
    Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, Hudson EK, Zwart SR (2015) Bone metabolism and renal stone risk during International Space Station missions. Bone 81:712–720PubMedCrossRefGoogle Scholar
  48. 48.
    Watenpaugh DE, Ballard RE, Breit GA, Bernauer EM, Blomqvist CG, Hargens AR (1995) Calf venous compliance measured with head-up tilt equals supine calf compliance. J Gravit Physiol 2:P21–P22PubMedGoogle Scholar
  49. 49.
    Hargens AR, Richardson S (2009) Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol 169(Suppl 1):S30–S33PubMedCrossRefGoogle Scholar
  50. 50.
    Tanaka K, Abe C, Awazu C, Morita H (2009) Vestibular system plays a significant role in arterial pressure control during head-up tilt in young subjects. Auton Neurosci 148:90–96PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka K, Abe C, Sakaida Y, Aoki M, Iwata C, Morita H (2012) Subsensory galvanic vestibular stimulation augments arterial pressure control upon head-up tilt in human subjects. Auton Neurosci 166:66–71PubMedCrossRefGoogle Scholar
  52. 52.
    Tanaka K, Tokumiya S, Ishihara Y, Kohira Y, Katafuchi T (2014) Compression stocking length effects on arterial blood pressure and heart rate following head-up tilt in healthy volunteers. Nurs Res 63:435–438PubMedCrossRefGoogle Scholar
  53. 53.
    Larsen PN, Moesgaard F, Madsen P, Pedersen M, Secher NH (1996) Subcutaneous oxygen and carbon dioxide tensions during head-up tilt-induced central hypovolaemia in humans. Scand J Clin Lab Invest 56:17–24PubMedCrossRefGoogle Scholar
  54. 54.
    Guyton AC (1991) Nervous regulation of the circulation, and rapid control of arterial pressure. In: Guyton AC (ed) Textbook of medical physiology. W.B. Saunders, PhiladelphiaGoogle Scholar
  55. 55.
    Kirsch KA, Baartz FJ, Gunga HC, Rocker L (1993) Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin Investig 71:687–689PubMedCrossRefGoogle Scholar
  56. 56.
    Draeger J, Schwartz R, Groenhoff S, Stern C (1995) Self-tonometry under microgravity conditions. Aviat Space Environ Med 66:568–570PubMedGoogle Scholar
  57. 57.
    Prisk GK, Guy HJ, Elliott AR, Deutschman RA 3rd, West JB (1993) Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol 75:15–26PubMedGoogle Scholar
  58. 58.
    Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Meyer DM, Blomqvist CG (1996) Central venous pressure in space. J Appl Physiol 81:19–25PubMedGoogle Scholar
  59. 59.
    Lathers CM, Riddle JM, Mulvagh SL, Mukai C, Diamandis PH, Dussack LG, Bungo MW, Charles JB (1993) Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight. J Clin Pharmacol 33:535–543PubMedCrossRefGoogle Scholar
  60. 60.
    Sundblad P, Spaak J, Kaijser L (2014) Time courses of central hemodynamics during rapid changes in posture. J Appl Physiol 116:1182–1188PubMedCrossRefGoogle Scholar
  61. 61.
    Norsk P (1992) Gravitational stress and volume regulation. Clin Physiol 12:505–526PubMedCrossRefGoogle Scholar
  62. 62.
    Gabrielsen A, Pump B, Bie P, Christensen NJ, Warberg J, Norsk P (2002) Atrial distension, haemodilution, and acute control of renin release during water immersion in humans. Acta Physiol Scand 174:91–99PubMedCrossRefGoogle Scholar
  63. 63.
    Bettinelli D, Kays C, Bailliart O, Capderou A, Techoueyres P, Lachaud JL, Vaida P, Miserocchi G (2002) Effect of gravity on chest wall mechanics. J Appl Physiol 92:709–716PubMedCrossRefGoogle Scholar
  64. 64.
    Edyvean J, Estenne M, Paiva M, Engel LA (1991) Lung and chest wall mechanics in microgravity. J Appl Physiol 71:1956–1966PubMedGoogle Scholar
  65. 65.
    Estenne M, Gorini M, Van Muylem A, Ninane V, Paiva M (1992) Rib cage shape and motion in microgravity. J Appl Physiol 73:946–954PubMedGoogle Scholar
  66. 66.
    Leach CS, Alexander WC (1975) Endocrine, electrolyte and fluid volume changes associated with Apollo missions. In: Johnston LF, Dietlein LF, Berry CA (eds) Biomedical results from Apollo. NASA, Washington, DCGoogle Scholar
  67. 67.
    Leach CS, Rambaut PPC (1977) Biomedical responses of the Skylab crewmen: an overview. In: Johnston LF, Dietlein LF (eds) Biomedical results from Skylab. NASA, Washington, DCGoogle Scholar
  68. 68.
    Leach CS (1987) Fluid control mechanisms in weightlessness. Aviat Space Environ Med 58:A74–A79PubMedGoogle Scholar
  69. 69.
    Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH (1996) Control of red blood cell mass in spaceflight. J Appl Physiol 81:98–104PubMedGoogle Scholar
  70. 70.
    Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshock RM, Weatherall PT, Levine BD (2001) Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91:645–653PubMedGoogle Scholar
  71. 71.
    Levine BD, Pawelczyk JA, Ertl AC, Cox JF, Zuckerman JH, Diedrich A, Biaggioni I, Ray CA, Smith ML, Iwase S, Saito M, Sugiyama Y, Mano T, Zhang R, Iwasaki K, Lane LD, Buckey JC Jr, Cooke WH, Baisch FJ, Eckberg DL, Blomqvist CG (2002) Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol 538:331–340PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lee SM, Feiveson AH, Stein S, Stenger MB, Platts SH (2015) Orthostatic intolerance after ISS and space shuttle missions. Aerosp Med Hum Perform 86:A54–A67PubMedCrossRefGoogle Scholar
  73. 73.
    Levine BD (2003) Neural control of the cardiovascular system in space. In: Buckey JC, Homick JL (eds) The Neurolab Spacelab mission: neuroscience research in space. NASA, HoustonGoogle Scholar
  74. 74.
    Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18PubMedGoogle Scholar
  75. 75.
    Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141PubMedGoogle Scholar
  76. 76.
    Kawada T, Sugimachi M (2016) Open-loop static and dynamic characteristics of the arterial baroreflex system in rabbits and rats. J Physiol Sci 66:15–41PubMedCrossRefGoogle Scholar
  77. 77.
    Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2004) Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 286:H1486–H1495PubMedCrossRefGoogle Scholar
  78. 78.
    Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594PubMedCrossRefGoogle Scholar
  79. 79.
    Tanaka K, Ito Y, Ikeda M, Katafuchi T (2014) RR interval variability during galvanic vestibular stimulation correlates with arterial pressure upon head-up tilt. Auton Neurosci 185:100–106PubMedCrossRefGoogle Scholar
  80. 80.
    Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Brain Res Rev 28:73–82PubMedCrossRefGoogle Scholar
  81. 81.
    Hallgren E, Migeotte PF, Kornilova L, Deliere Q, Fransen E, Glukhikh D, Moore ST, Clement G, Diedrich A, MacDougall H, Wuyts FL (2015) Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space. Sci Rep 5:17627PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hallgren E, Kornilova L, Fransen E, Glukhikh D, Moore ST, Clement G, Van Ombergen A, MacDougall H, Naumov I, Wuyts FL (2016) Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight. J Neurophysiol 115:3045–3051PubMedCrossRefGoogle Scholar
  83. 83.
    Morita H, Abe C, Tanaka K (2016) Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex. Sci Rep (in press)Google Scholar
  84. 84.
    MacNeilage PR, Turner AH, Angelaki DE (2010) Canal–otolith interactions and detection thresholds of linear and angular components during curved-path self-motion. J Neurophysiol 104:765–773PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Scherer H, Clarke AH (1985) The caloric vestibular reaction in space. Physiological considerations. Acta Otolaryngol 100:328–336PubMedCrossRefGoogle Scholar
  86. 86.
    Reschke MR, Bloomberg JJ, Harm DL, Huebner WP, Krnavek JM, William H (1999) Visual-vestibular integration as a function of adaptation to space flight and return to Earth. In: Sawin CF, Taylor GR, Smith WL (eds) Extended duration orbiter medical project. NASA, HoustonGoogle Scholar
  87. 87.
    Moore ST, Clement G, Raphan T, Cohen B (2001) Ocular counterrolling induced by centrifugation during orbital space flight. Exp Brain Res 137:323–335PubMedCrossRefGoogle Scholar
  88. 88.
    Clement G, Moore ST, Raphan T, Cohen B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138:410–418PubMedCrossRefGoogle Scholar
  89. 89.
    Paloski WH, Black FO, Reschke MF, Calkins DS, Shupert C (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14:9–17PubMedGoogle Scholar
  90. 90.
    Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754PubMedCrossRefGoogle Scholar
  91. 91.
    Gilbert CA, Stevens PM (1966) Forearm vascular responses to lower body negative pressure and orthostasis. J Appl Physiol 21:1265–1272PubMedGoogle Scholar
  92. 92.
    Musgrave FS, Zechman FW, Mains RC (1969) Changes in total leg volume during lower body negative pressure. Aerosp Med 40:602–606PubMedGoogle Scholar
  93. 93.
    Convertino VA (2001) Lower body negative pressure as a tool for research in aerospace physiology and military medicine. J Gravit Physiol 8:1–14PubMedGoogle Scholar
  94. 94.
    Bevegard S, Castenfors J, Lindblad LE (1977) Effect of changes in blood volume distribution on circulatory variables and plasma renin activity in man. Acta Physiol Scand 99:237–245PubMedCrossRefGoogle Scholar
  95. 95.
    Charles JB, Lathers CM (1994) Summary of lower body negative pressure experiments during space flight. J Clin Pharmacol 34:571–583PubMedCrossRefGoogle Scholar
  96. 96.
    Gazenko OG, Genin AM, Egorov AD (1981) Summary of medical investigations in the U.S.S.R. manned space missions. Acta Astronaut 8:907–917PubMedCrossRefGoogle Scholar
  97. 97.
    Goswami N, Loeppky JA, Hinghofer-Szalkay H (2008) LBNP: past protocols and technical considerations for experimental design. Aviat Space Environ Med 79:459–471PubMedCrossRefGoogle Scholar
  98. 98.
    Charles JB, Fritsch-Yelle JM, Whitson PA, Wood ML, Brown TE, Fortner GW (1999) Cardiovascular deconditioning. In: Sawin CF, Taylor GR, Smith WL (eds) Extended duration orbiter medical project. NASA, HoustonGoogle Scholar
  99. 99.
    Murthy G, Watenpaugh DE, Ballard RE, Hargens AR (1994) Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity. J Appl Physiol 76:2742–2748PubMedCrossRefGoogle Scholar
  100. 100.
    Schneider SM, Lee SM, Feiveson AH, Watenpaugh DE, Macias BR, Hargens AR (2016) Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest. Physiol Rep 4Google Scholar
  101. 101.
    Schneider SM, Watenpaugh DE, Lee SM, Ertl AC, Williams WJ, Ballard RE, Hargens AR (2002) Lower-body negative-pressure exercise and bed-rest-mediated orthostatic intolerance. Med Sci Sports Exerc 34:1446–1453PubMedCrossRefGoogle Scholar
  102. 102.
    Watenpaugh DE (2002) Nocturnal lower body positive pressure to counteract microgravity-induced cardiac remodeling/atrophy. J Appl Physiol 92:2222–2223 (author reply 2223) PubMedCrossRefGoogle Scholar
  103. 103.
    Watenpaugh DE, Ballard RE, Schneider SM, Lee SM, Ertl AC, William JM, Boda WL, Hutchinson KJ, Hargens AR (2000) Supine lower body negative pressure exercise during bed rest maintains upright exercise capacity. J Appl Physiol 89:218–227PubMedGoogle Scholar
  104. 104.
    Watenpaugh DE, O’Leary DD, Schneider SM, Lee SM, Macias BR, Tanaka K, Hughson RL, Hargens AR (2007) Lower body negative pressure exercise plus brief postexercise lower body negative pressure improve post-bed rest orthostatic tolerance. J Appl Physiol 103:1964–1972PubMedCrossRefGoogle Scholar
  105. 105.
    Zwart SR, Hargens AR, Lee SM, Macias BR, Watenpaugh DE, Tse K, Smith SM (2007) Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone 40:529–537PubMedCrossRefGoogle Scholar
  106. 106.
    Macaulay TR, Brandon R, Macias BR, Lee SMC, Boda WL, Watenpaugh DE, Hargens AR (2016) Treadmill exercise within lower-body negative pressure attenuates simulated spaceflight-induced reductions of balance abilities in men but not women. npj Microgravity 2:1–8CrossRefGoogle Scholar
  107. 107.
    Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, Macias BR, Biolo G, Hargens AR (2007) Cardiac atrophy in women following bed rest. J Appl Physiol 103:8–16PubMedCrossRefGoogle Scholar
  108. 108.
    Cavanagh PR, Genc KO, Gopalakrishnan R, Kuklis MM, Maender CC, Rice AJ (2010) Foot forces during typical days on the international space station. J Biomech 43:2182–2188PubMedCrossRefGoogle Scholar
  109. 109.
    Boda WL, Watenpaugh DE, Ballard RE, Hargens AR (2000) Supine lower body negative pressure exercise simulates metabolic and kinetic features of upright exercise. J Appl Physiol (1985) 89: 649–654Google Scholar
  110. 110.
    Lambertz D, Perot C, Kaspranski R, Goubel F (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90:179–188PubMedGoogle Scholar
  111. 111.
    Hayes J (2015) The first decade of ISS exercise: lessons learned on expeditions 1–25. Aerosp Med Hum Perform 86:A1–A6PubMedCrossRefGoogle Scholar
  112. 112.
    Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906PubMedCrossRefGoogle Scholar
  113. 113.
    Kozlovskaya IB, Yarmanova EN, Yegorov AD, Sepantsov VI, Fomina EV, Tomilovaskaya ES (2015) Russian countermeasure system for adverse effects of microgravity on long-duration ISS flights. Aerosp Med Hum Perform 86:A24–A31PubMedCrossRefGoogle Scholar
  114. 114.
    Sibonga JD, Cavanagh PR, Lang TF, LeBlanc AD, Schneider VS, Shackelford LC, Smith SM, Vico L (2008) Adaptation of the skeletal system during long-duration spaceflight. Clin Rev Bone Miner Metab 5:249–261CrossRefGoogle Scholar
  115. 115.
    Schneider SM, Amonette WE, Blazine K, Bentley J, Lee SM, Loehr JA, Moore AD Jr, Rapley M, Mulder ER, Smith SM (2003) Training with the International Space Station interim resistive exercise device. Med Sci Sports Exerc 35:1935–1945PubMedCrossRefGoogle Scholar
  116. 116.
    Loehr JA, Lee SM, English KL, Sibonga J, Smith SM, Spiering BA, Hagan RD (2011) Musculoskeletal adaptations to training with the advanced resistive exercise device. Med Sci Sports Exerc 43:146–156PubMedCrossRefGoogle Scholar
  117. 117.
    Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588:3567–3592PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gopalakrishnan R, Genc KO, Rice AJ, Lee SM, Evans HJ, Maender CC, Ilaslan H, Cavanagh PR (2010) Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med 81:91–102PubMedCrossRefGoogle Scholar
  119. 119.
    English KL, Lee SMC, Loehr JA, Ploutz-Snyder RJ, Ploutz-Snyder LL (2015) Isokinetic strength changes following long-duration spaceflight on the ISS. Aerosp Med Hum Perform 86:A68–A77PubMedCrossRefGoogle Scholar
  120. 120.
    Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL (2014) Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 29:1639–1645PubMedCrossRefGoogle Scholar
  121. 121.
    Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, Smith SM, Evans H, Spector E, Ploutz-Snyder R, Sibonga J, Keyak J, Nakamura T, Kohri K, Ohshima H (2013) Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 24:2105–2114PubMedCrossRefGoogle Scholar
  122. 122.
    Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19PubMedCrossRefGoogle Scholar
  123. 123.
    Gupta A, March L (2016) Treating osteoporosis. Aust Prescr 39:40–46PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Czerwinski E (2006) New options of pharmacological treatment of osteoporosis. Ortop Traumatol Rehabil 8:367–371PubMedGoogle Scholar
  125. 125.
    Hadji P, Minne H, Pfeifer M, Bourgeois P, Fardellone P, Licata A, Devas V, Masanauskaite D, Barrett-Connor E (2008) Treatment preference for monthly oral ibandronate and weekly oral alendronate in women with postmenopausal osteoporosis: a randomized, crossover study (BALTO II). Joint Bone Spine 75:303–310PubMedCrossRefGoogle Scholar
  126. 126.
    Crandall CJ, Aragaki AK, LeBoff MS, Li W, Wactawski-Wende J, Cauley JA, Margolis KL, Manson JE (2016) Calcium plus vitamin D supplementation and height loss: findings from the Women’s Health Initiative Calcium and Vitamin D clinical trial. Menopause (in press)Google Scholar
  127. 127.
    Chandler TJ, Stone MH (1991) The squat exercise in athletic conditioning: a review of the literature. Natl Strength Cond Assoc J 13:51–58Google Scholar
  128. 128.
    Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominami E, Nonaka I, Ogawa T, Adams GR, Baldwin KM, Yasui N, Kishi K, Takeda S (2004) Skeletal muscle gene expression in space-flown rats. FASEB J 18:522–524PubMedGoogle Scholar
  129. 129.
    Allum JH, Honegger F (1998) Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Exp Brain Res 121:478–494PubMedCrossRefGoogle Scholar
  130. 130.
    Britton TC, Day BL, Brown P, Rothwell JC, Thompson PD, Marsden CD (1993) Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res 94:143–151PubMedCrossRefGoogle Scholar
  131. 131.
    Ray CA, Monahan KD (2002) The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes. Clin Exp Pharmacol Physiol 29:98–102PubMedCrossRefGoogle Scholar
  132. 132.
    Nakamura Y, Matsuo S, Hosogai M, Kawai Y (2009) Vestibular control of arterial blood pressure during head-down postural change in anesthetized rabbits. Exp Brain Res 194:563–570PubMedCrossRefGoogle Scholar
  133. 133.
    Akima H, Katayama K, Sato K, Ishida K, Masuda K, Takada H, Watanabe Y, Iwase S (2005) Intensive cycle training with artificial gravity maintains muscle size during bed rest. Aviat Space Environ Med 76:923–929PubMedGoogle Scholar
  134. 134.
    Iwase S (2005) Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut 57:75–80PubMedCrossRefGoogle Scholar
  135. 135.
    Iwasaki K, Shiozawa T, Kamiya A, Michikami D, Hirayanagi K, Yajima K, Iwase S, Mano T (2005) Hypergravity exercise against bed rest induced changes in cardiac autonomic control. Eur J Appl Physiol 94:285–291PubMedCrossRefGoogle Scholar
  136. 136.
    Yang Y, Baker M, Graf S, Larson J, Caiozzo VJ (2007) Hypergravity resistance exercise: the use of artificial gravity as potential countermeasure to microgravity. J Appl Physiol 103:1879–1887PubMedCrossRefGoogle Scholar
  137. 137.
    Shiba N, Matsuse H, Takano Y, Yoshimitsu K, Omoto M, Hashida R, Tagawa Y, Inada T, Yamada S, Ohshima H (2015) Electrically stimulated antagonist muscle contraction increased muscle mass and bone mineral density of one astronaut—initial verification on the International Space Station. PLoS One 10:e0134736PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Graduate School of Health and MedicineGifu University of Medical ScienceSekiJapan
  2. 2.Department of Physiology, Faculty of MedicineAichi Medical SchoolNagakuteJapan
  3. 3.Division of Adaptation Physiology, Faculty of MedicineTottori UniversityYonagoJapan

Personalised recommendations