The Journal of Physiological Sciences

, Volume 67, Issue 5, pp 603–611 | Cite as

Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress

  • Toshiyuki Maezawa
  • Masayuki Tanaka
  • Miho Kanazashi
  • Noriaki Maeshige
  • Hiroyo Kondo
  • Akihiko Ishihara
  • Hidemi FujinoEmail author
Original Paper


Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.


Skeletal muscle fibrosis Transforming growth factor-β1 Reactive oxygen species Astaxanthin Immobilization 



This study was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant (Grant number 25560065, 25282165, 15K16516, 16K12934).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Okita M, Yoshimura T, Nakano J, Motomura M, Eguchi K (2004) Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle. J Muscle Res Cell Motil 25(2):159–166CrossRefPubMedGoogle Scholar
  2. 2.
    Hibino I, Okita M, Inoue T, Banno Y, Hosono M (2008) Effect of immobilization on insoluble collagen concentration and type I and type III collagen isoforms of rat soleus muscle. J Jpn Phys Ther Assoc 11(1):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Slimani L, Micol D, Amat J, Delocros G, Meunier B, Taillandier D, Polge C, Bechet D, Dardevet D, Picard B, Attaix D, Listrat A, Combaret L (2012) The worsening of tibialis anterior muscle atrophy during recovery post-immobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis. Am J Physiol Endocrinol Metab 303(11):E1335–E1347CrossRefPubMedGoogle Scholar
  4. 4.
    Honda Y, Sakamoto J, Nakano J, Kataoka H, Sasabe R, Goto K, Tanaka M, Origuchi T, Yoshimura T, Okita M (2015) Upregulation of interleukin-1β/transforming growth factor-β1 and hypoxia relate to molecular mechanisms underlying immobilization-induced muscle contracture. Muscle Nerve 52(3):419–427CrossRefPubMedGoogle Scholar
  5. 5.
    Manoury B, Nenan S, Leclerc O, Guenon I, Boichot E, Planquois JM, Bertrand CP, Lagente V (2005) The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res 6(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Petrov VV, Fagard RH, Lijnen PJ (2002) Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 39(2):258–263CrossRefPubMedGoogle Scholar
  7. 7.
    Lenz AG, Costabel U, Maier KL (1996) Oxidized BAL fluid proteins in patients with interstitial lung diseases. Eur Respir J 9(2):307–312CrossRefPubMedGoogle Scholar
  8. 8.
    Rottoli P, Magi B, Cianti R, Bargagli E, Vagaggini C, Nikiforakis N, Pallini V, Bini L (2005) Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5(10):2612–2618CrossRefPubMedGoogle Scholar
  9. 9.
    Zuo L, Pannell BK (2015) Redox Characterization of Functioning Skeletal Muscle. Front Physiol 6:338PubMedPubMedCentralGoogle Scholar
  10. 10.
    Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111(5):1459–1466CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK (2013) Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol 115(4):529–538CrossRefPubMedGoogle Scholar
  12. 12.
    Gram M, Vigelsø A, Yokota T, Helge JW, Dela F, Mogensen MH (2015) Skeletal muscle mitochondrial H2O2 emission increases with immobilization and decreases after aerobic training in young and older men. J Physiol 593(17):4011–4027CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Polotow GW, Vardaris CV, Mihaliuc AR, Gonçalves MS, Pereira B, Ganini D, Barros MP (2014) Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients 6(12):5819–5838CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu PH, Aoi W, Takami M, Terajima H, Tanimura Y, Naito Y, Itoh Y, Yoshikawa T (2014) The astaxanthin-induced improvement in lipid metabolism during exercise is mediated by a PGC-1α increase in skeletal muscle. J Clin Biochem Nutr 54(2):86–89CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216CrossRefPubMedGoogle Scholar
  17. 17.
    Shibata A, Kiba Y, Akati N, Fukuzawa K, Terada H (2001) Molecular characteristics of astaxanthin and beta-carotene in the phospholipid monolayer and their distributions in the phospholipid bilayer. Chem Phys Lipids 113(1–2):11–22CrossRefPubMedGoogle Scholar
  18. 18.
    Nishida Y, Yamashita E, Miki W (2007) Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Sci 11:16–20Google Scholar
  19. 19.
    Rodrigues E, Mariutti LR, Mercadante AZ (2012) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10(8):1784–1798CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kidd P (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16(4):355–364PubMedGoogle Scholar
  21. 21.
    McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP (2007) Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta 1768(1):167–174CrossRefPubMedGoogle Scholar
  22. 22.
    Kanazashi M, Okumura Y, Al-Nassan S, Murakami S, Kondo H, Nagatomo F, Fujita N, Ishihara A, Roy RR, Fujino H (2013) Protective effects of astaxanthin on capillary regression in atrophied soleus muscle of rats. Acta Physiol (Oxf) 207(2):405–415CrossRefGoogle Scholar
  23. 23.
    Kanazashi M, Tanaka M, Murakami S, Kondo H, Nagatomo F, Ishihara A, Roy RR, Fujino H (2014) Amelioration of capillary regression and atrophy of the soleus muscle in hindlimb-unloaded rats by astaxanthin supplementation and intermittent loading. Exp Physiol 99(8):1065–1077CrossRefPubMedGoogle Scholar
  24. 24.
    Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M, Yoshikawa T (2003) Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal 5(1):139–144CrossRefPubMedGoogle Scholar
  25. 25.
    Takeuchi K, Hatade T, Wakamiya S, Fujita N, Arakawa T, Miki A (2014) Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem 116(2):327–334CrossRefPubMedGoogle Scholar
  26. 26.
    Tanaka M, Kanazashi M, Maezawa T, Kondo H, Fujino H (2015) Abnormalities in three-dimensional capillary architecture and imbalance between vascular endothelial growth factor-A and thrombospondin-1 in soleus muscle of ovariectomized rat. Acta Histochem 117(7):605–611CrossRefPubMedGoogle Scholar
  27. 27.
    Mülsch A, Oelze M, Klöss S, Mollnau H, Töpfer A, Smolenski A, Walter U, Stasch JP, Warnholtz A, Hink U, Meinertz T, Münzel T (2001) Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. Circulation 103:2188–2194CrossRefPubMedGoogle Scholar
  28. 28.
    Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 142(4):527–528CrossRefPubMedGoogle Scholar
  29. 29.
    Border WA, Nobble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331(19):1287–1292Google Scholar
  30. 30.
    Williams E, Iredale J (2000) Hepatic regeneration and TGF-beta: growing to a prosperous perfection. Gut 46(5):593–594CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GR, Chandel NS (2013) Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem 288(2):770–777CrossRefPubMedGoogle Scholar
  32. 32.
    Bracey NA, Gershkovich B, Chun J, Vilaysane A, Meijndert HC, Wright JR Jr, Fedak PW, Beck PL, Muruve DA, Duff HJ (2014) Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem 289(28):19571–19584CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bellocq A, Azoulay E, Marullo S, Flahault A, Fouquwray B, Philippe C, Cardranel J, Baud L (1999) Reactive oxygen and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol 21(1):128–136CrossRefPubMedGoogle Scholar
  34. 34.
    Qi S, den Hartoq GJ, Bast A (2009) Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol 237(1):111–118CrossRefPubMedGoogle Scholar
  35. 35.
    Chan KM, Decker EA (1994) Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr 34(4):403–426CrossRefPubMedGoogle Scholar
  36. 36.
    Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69(3):443–449CrossRefPubMedGoogle Scholar
  37. 37.
    Aoi W, Naito Y, Takanami Y, Ishii T, Kawai Y, Akagiri S, Kato Y, Osawa T, Yoshikawa T (2008) Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem Biophys Res Commun 366(4):892–897CrossRefPubMedGoogle Scholar
  38. 38.
    Yang Y, Kim B, Park YK, Koo SI, Lee JY (2015) Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta 1850(1):178–185CrossRefPubMedGoogle Scholar
  39. 39.
    Desmoulie`re A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-b1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111CrossRefGoogle Scholar
  40. 40.
    Liu RM, Gaston Pravia KA (2010) Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 48(1):1–15CrossRefPubMedGoogle Scholar
  41. 41.
    Jaffer OA, Carter AB, Sanders PN, Dibbern ME, Winters CJ, Murthy S, Ryan AJ, Rokita AG, Prasad AM, Zabner J, Kline JN, Grumbach IM, Anderson ME (2015) Mitochondrial-targeted antioxidant therapy decreases transforming growth factor-β-mediated collagen production in a murine asthma model. Am J Respir Cell Mol Biol 52(1):106–115CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhang J, Xu P, Wang Y, Wang M, Li H, Lin S, Mao C, Wang B, Song X, Lv C (2015) Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission. J Cell Mol Med 19(9):2215–2231PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang M, Zhang J, Song X, Liu W, Zhang L, Wang X, Lv C (2013) Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells. Food Chem Toxicol 56:450–458CrossRefPubMedGoogle Scholar
  44. 44.
    Shen M, Chen K, Lu J, Cheng P, Xu L, Dai W, Wang F, He L, Zhang Y, Chengfen W, Li J, Yang J, Zhu R, Zhang H, Zheng Y, Zhou Y, Guo C (2014) Protective effect of astaxanthin on liver fibrosis through modulation of TGF-β1 expression and autophagy. Mediators Inflamm. doi: 10.1155/2014/954502 Google Scholar
  45. 45.
    Alex M, Sauganth Paul MV, Abhilash M, Mathews VV, Anilkumar TV, Nair RH (2014) Astaxanthin modulates osteopontin and transforming growth factor β1 expression levels in a rat model of nephrolithiasis: a comparison with citrate administration. BJU Int 114(3):458–466PubMedGoogle Scholar
  46. 46.
    McCormick LL, Zhang Y, Tootell E, Gilliam AC (1999) Anti-TGF-beta treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J Immunol 163(10):5693–5699PubMedGoogle Scholar
  47. 47.
    Iyer P, Maddala R, Pattabiraman PP, Rao PV (2012) Connective tissue growth factor-mediated upregulation of neuromedin U expression in trabecular meshwork cells and its role in homeostasis of aqueous humor outflow. Invest Ophthalmol Vis Sci 26 53(8):4952–4962CrossRefGoogle Scholar
  48. 48.
    Park SK, Kim J, Seomun Y, Choi J, Kim DH, Han IO, Lee EH, Chung SK, Joo CK (2001) Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun 22 284(4):966–971CrossRefGoogle Scholar
  49. 49.
    Tsai CC, Wu SB, Chang PC, Wei YH (2015) Alteration of connective tissue growth factor (CTGF) expression in orbital fibroblasts from patients with Graves’ ophthalmopathy. PLoS ONE 24 10(11):e0143514CrossRefGoogle Scholar
  50. 50.
    McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294(5):R1608–R1617CrossRefPubMedGoogle Scholar
  51. 51.
    Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM, Camerino GM, Ricciuti P, Brocca L, Pellegrino MA, Bottinelli R, Camerino DC (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61(6):553–563CrossRefPubMedGoogle Scholar
  52. 52.
    Brocca L, Pellegrino MA, Desaphy JF, Pierno S, Camerino DC, Bottinelli R (2010) Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimb-unloaded mice. Exp Physiol 95(2):331–350CrossRefPubMedGoogle Scholar
  53. 53.
    Powers SK, Smuder AJ, Criswell DS (2011) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 1 15(9):2519–2528CrossRefGoogle Scholar
  54. 54.
    Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS ONE 12 8(12):e83518CrossRefGoogle Scholar
  55. 55.
    Yoshihara T, Yamamoto Y, Shibaguchi T, Miyaji N, Kakigi R, Naito H, Goto K, Ohmori D, Yoshioka T, Sugiura T (2016) Dietary astaxanthin supplementation attenuates disuse-induced muscle atrophy and myonuclear apoptosis in the rat soleus muscle. J Physiol Sci. doi: 10.1007/s12576-016-0453-4 Google Scholar
  56. 56.
    Shibaguchi T, Yamaguchi Y, Miyaji N, Yoshihara T, Naito H, Goto K, Ohmori D, Yoshioka T, Sugiura T (2016) Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats. Physiol Rep 4(15). doi: 10.14814/phy2.12885
  57. 57.
    Trudel G, Jabi M, Uhthoff HK (2003) Localized and adaptive synoviocyte proliferation characteristics in rat knee joint contractures secondary to immobility. Arch Phys Med Rehabil 84(9):1350–1356CrossRefPubMedGoogle Scholar
  58. 58.
    Kojima S, Hoso M, Watanabe M, Matsuzaki T, Hibino I, Sasaki K (2014) Experimental Joint immobilization and remobilization in the rats. J Phys Ther Sci 26(6):865–887CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Toshiyuki Maezawa
    • 1
  • Masayuki Tanaka
    • 1
    • 2
  • Miho Kanazashi
    • 3
  • Noriaki Maeshige
    • 1
  • Hiroyo Kondo
    • 4
  • Akihiko Ishihara
    • 5
  • Hidemi Fujino
    • 1
    Email author
  1. 1.Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobe-shiJapan
  2. 2.Department of Physical Therapy, Faculty of Human SciencesOsaka University of Human SciencesSettsu-shiJapan
  3. 3.Department of Physical Therapy, Faculty of Health and WelfarePrefectural University of HiroshimaMihara-shiJapan
  4. 4.Department of Food Science and NutritionNagoya Women’s UniversityNagoya-shiJapan
  5. 5.Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental StudiesKyoto UniversityKyoto-shiJapan

Personalised recommendations